Bulletin of Materials Science

, Volume 40, Issue 4, pp 759–771 | Cite as

Characterization of \({\hbox {BaTiO}_{3}}\) piezoelectric perovskite material for multilayer actuators

  • Magdalena Gromada
  • Mojtaba Biglar
  • Tomasz Trzepieciński
  • Feliks Stachowicz


In this study, we present the results of the manufacturing of \(\hbox {BaTiO}_{3}\) powder, which is meant for use in stacked-disk multilayer actuator production. The solid-state technique was used for powder preparation. The properties of barium titanate material, at each stage of its fabrication (powder, granulate, sintered material), influencing on its application for the stacked-disk multilayer actuator were determined. Particularly, the four parameters of \(\hbox {BaTiO}_{3}\) sinter affecting on the usability properties of actuators, not found before in the literature, were estimated. Parameters characterizing the extent of material sintering, SEM microstructures and electric properties of the fabricated pellets are presented and discussed. The dilatometric curve was executed using the high temperature dilatometer to determine at which temperature barium titanate pellets and beams should be sintered to receive full dense sinters. Parameters characterizing the extent of material sintering: the apparent density, the apparent porosity and the water absorbability were estimated. Finally, the problem of metal layer deposition on barium titanate ceramics during actuator fabrication is considered.


Actuators perovskites piezoelectric properties sintering 



The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. PITN-GA-2013- 606878.


  1. 1.
    Roy A C and Mohanta D 2009 Scr. Mater. 61 891CrossRefGoogle Scholar
  2. 2.
    Vijatović M M, Bobić J D and Stojanović B D 2008 Sci. Sinter. 40 235CrossRefGoogle Scholar
  3. 3.
    Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A et al 2004 Phys. Rev. B 70 024107CrossRefGoogle Scholar
  4. 4.
    Upadhyay R H, Argekar A P and Deshmukh R D 2014 Bull. Mater. Sci. 37 481CrossRefGoogle Scholar
  5. 5.
    Mahajan S, Thakur O P, Prakash C and Sreenivas K 2011 Bull. Mater. Sci. 34 1483CrossRefGoogle Scholar
  6. 6.
    Habib A, Stelzer N, Angerer P and Haubner R 2011 Bull. Mater. Sci. 34 19CrossRefGoogle Scholar
  7. 7.
    Osman K I 2011 Synthesis and characterization of BaTiO \(_{{\mathit{3}}}\) ferroelectric material PhD ThesisGoogle Scholar
  8. 8.
    Stojanovic B D, Foschini C R, Pavlovic V B, Pavlovic V M, Pejovic V and Varela J A 2002 Ceram. Int. 28 293CrossRefGoogle Scholar
  9. 9.
    Yu P, Wang X and Cui B 2007 Scr. Mater. 57 623CrossRefGoogle Scholar
  10. 10.
    Miot C, Proust C and Husson E 1995 J. Am. Ceram. Soc. 15 1163CrossRefGoogle Scholar
  11. 11.
    Kholodkova A, Danchevskaya M and Fionov A 2012 In Proceedings of the nanocon conference p 134Google Scholar
  12. 12.
    Kao C F and Yang W D 1999 Appl. Organomet. Chem. 13 383CrossRefGoogle Scholar
  13. 13.
    Kržmanc M M, Klement D, Jančar B and Suvorov D 2015 Ceram. Int. 41 15128CrossRefGoogle Scholar
  14. 14.
    Gaytan S M, Cadena M A, Karim H, Delfin D, Lin Y, Espalin D et al 2015 Ceram. Int. 41 6610CrossRefGoogle Scholar
  15. 15.
    Chen J F, Shen Z G, Liu F T, Liu X L and Yun J 2003 Scr. Mater. 49 509CrossRefGoogle Scholar
  16. 16.
    Brzozowski E and Castro M S 2003 Thermochim. Acta 398 123CrossRefGoogle Scholar
  17. 17.
    Pavlović V P, Nikolić M V, Nicolić Z, Branković G, Živković L, Pavlović V B et al 2007 J. Eur. Ceram. Soc. 27 575CrossRefGoogle Scholar
  18. 18.
    Kong L B, Ma J, Huang H, Zhang R F and Que W X 2002 J. Alloys Compd. 337 226CrossRefGoogle Scholar
  19. 19.
    Nicolić M V, Pavlović V P, Pavlović V B and Ristić M M 2006 Sci. Sinter. 38 239CrossRefGoogle Scholar
  20. 20.
    Kim Y J, Hyun J W, Kim H S, Lee J H, Yun M Y, Noh S J et al 2009 Bull. Korean Chem. Soc. 30 1267CrossRefGoogle Scholar
  21. 21.
    Kim B J, Park T G and Kim M H 1998 J. Korean Phys. Soc. 32 S289Google Scholar
  22. 22.
    Steele B C H 1991 Electronic ceramics (Amsterdam: Elsevier)Google Scholar
  23. 23.
    Richerson D W 1992 Modern ceramic engineering: properties, processing, and use in design (New York: Marcel Dekker Inc.)Google Scholar
  24. 24.
    Newnham R E and Trolier-Mckinstry S E N 1990 Ceram. Trans. 8 235Google Scholar
  25. 25.
    Park Y and Kim H 1997 J. Am. Ceram. Soc. 80 106CrossRefGoogle Scholar
  26. 26.
    Stojanovic B D, Foschini C R, Zaghete M A and Veira F O S 2003 J. Mater. Process. Technol. 143–144 802CrossRefGoogle Scholar
  27. 27.
    Benlahrache M T, Benhamla N and Achour S 2004 J. Eur. Ceram. Soc. 24 1493CrossRefGoogle Scholar
  28. 28.
    Vittayakorn N 2006 J. Appl. Sci. Res. 2 1319Google Scholar
  29. 29.
    Hang T, Glaum J, Genenko Y A, Phung T and Hoffman M 2016 Acta Mater. 102 284CrossRefGoogle Scholar
  30. 30.
    Biglar M, Gromada M, Stachowicz F and Trzepieciński T 2015 Acta Mech. 266 3451CrossRefGoogle Scholar
  31. 31.
    Jiang W, Devanathan R, Sundgren C J, Ishimaru M, Sato K, Varga T et al 2013 Acta Mater. 61 7904CrossRefGoogle Scholar
  32. 32.
    Hu J and Shen Z 2015 Scr. Mater. 107 14CrossRefGoogle Scholar
  33. 33.
    Wang J C, Zheng P, Yin R Q, Zheng L M, Du J and Zheng L 2015 Ceram. Int. 41 14165CrossRefGoogle Scholar
  34. 34.
    Cai W, Fu C, Lin Z and Deng X 2011 Ceram. Int. 37 3643CrossRefGoogle Scholar
  35. 35.
    Zheng P, Zhang J L, Tan Y Q and Wang C L 2012 Acta Mater. 60 5022CrossRefGoogle Scholar
  36. 36.
    He F, Ren W, Liang G, Shi P, Wu X and Chen X 2013 Ceram. Int. 39 S481CrossRefGoogle Scholar
  37. 37.
    Duran P, Gutierrez D, Tartaj J and Moure C 2002 Ceram. Int. 28 283CrossRefGoogle Scholar
  38. 38.
    Yoon D H and Lee B I 2004 J. Eur. Ceram. Soc. 24 739CrossRefGoogle Scholar
  39. 39.
    Wang J C, Zheng P, Yin R Q, Zheng L M, Du J, Zheng L et al 2015 Ceram. Int. 41 14165Google Scholar
  40. 40.
    Park J H, Yoo D H, Kim C S, Yang H S, Moon B K, Jung G J et al 2006 J. Korean Phys. Soc. 49 S680Google Scholar
  41. 41.
    Hilborn Jr R B 1965 J. Appl. Phys. 36 1553CrossRefGoogle Scholar
  42. 42.
    Koops C G 1951 Phys. Rev. 83 121CrossRefGoogle Scholar
  43. 43.
    Chanmal C V and Jog J P 2008 Express Polym. Lett. 2 294CrossRefGoogle Scholar
  44. 44.
    Batoo K M, Kumar S, Lee C G and Alimuddin 2009 Curr. Appl. Phys. 9 826CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Institute of Power Engineering, Ceramic Department CERELResearch InstituteBoguchwałaPoland
  2. 2.Department of Materials Forming and Processing, Faculty of Mechanical Engineering and AeronauticsRzeszow University of TechnologyRzeszówPoland

Personalised recommendations