Advertisement

Bulletin of Materials Science

, Volume 39, Issue 7, pp 1843–1850 | Cite as

Physicochemical, structural and induced ferromagnetic properties of Co–In-codoped CdO synthesised via Cd chloride: significant effect of post-treatment hydrogen

  • A A DAKHELEmail author
  • W E ALNASER
Article

Abstract

Nanoparticle solid solution powders of cadmium oxide doped with different concentrations of cobalt and indium ions were synthesised by solvothermal method through CdCl 2 H 2 O precursor route. The objective of the present work is to study and develop conditions necessary to create stable room-temperature ferromagnets (RT-FMs) in transparent conducting oxide (TCO) CdO for applications in the field of dilute magnetic semiconductors (DMSs). To achieve this aim, cobalt (Co 2+ ) dopant ions were used as a source of stable FM, while In 3+ dopant ions supply free electrons that enhance the electronic medium of interaction. The electronic medium in the host CdO lattice, which carries the long-range spin–spin (S.S) exchange interaction between localised Co 2+ (3d) spins of dopant ions, was further developed by annealing in hydrogen gas (hydrogenation). The crystalline structure of the powder samples was investigated by the X-ray diffraction (XRD) method. The optical absorption properties were studied by diffuse reflection spectroscopy (DRS). Magnetic measurements reveal that the Co–In-codoped CdO powder has FM properties superimposed on paramagnetic (PM) behaviour. However, annealing in hydrogen atmosphere strongly boosts the created FM so that the saturation magnetisation increases 90 times. Physical explanations and discussion are given in the article. Thus, it is proved that the magnetic properties could be tailored to TCO CdO by Co-doping and post-treatment under H 2 atmosphere.

Keywords

Co–In-codoped CdO room-temperature ferromagnetism hydrogen treatment. 

References

  1. 1.
    Zhao Z, Morel D L and Ferekides C S 2002 Thin Solid Films 413 203CrossRefGoogle Scholar
  2. 2.
    Dakhel A A 2012 J. Electr. Mater. 41 2405CrossRefGoogle Scholar
  3. 3.
    Shaohua Sun, Ping Wu and Pengfei Xing 2012, J. Magn. Magn. Mater. 324 2932CrossRefGoogle Scholar
  4. 4.
    Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15027Google Scholar
  5. 5.
    Choudhury B, Choudhurym A, Maidul Islam A K M, Alagarsmy P and Mukhherjee M 2011 J. Magn. Magn. Mater. 323 440CrossRefGoogle Scholar
  6. 6.
    Lancashire R J 2015 Department of Chemistry, University of West Indies, Jamaica Web: http://wwwchem.uwimona.edu.jm/spectra/MagMom.html
  7. 7.
    Shannon R D 1976 Acta Crystallogr. A 32 751CrossRefGoogle Scholar
  8. 8.
    Ahmad Tokeer and Khatoon Sarvari 2015, J. Mater. Res. 30 1611CrossRefGoogle Scholar
  9. 9.
    Khatton S, Coolahan K, Lofland E S and Ahmed T 2013 , J. Am. Cer. Soc. 96 2544CrossRefGoogle Scholar
  10. 10.
    Dakhel A A and Bououdina M 2014 J. Supercond. Nov. Magn. 27 2507CrossRefGoogle Scholar
  11. 11.
    Ahmad T, Khatoon S, Lofland S E and Thakur G S 2014 Mater. Sci. Semicond. Proc. 17 207CrossRefGoogle Scholar
  12. 12.
    Gandhi V, Ganesan R, Syedahamed H H A and Thaiyan M 2014 J. Phys. Chem. C 118 9715CrossRefGoogle Scholar
  13. 13.
    Srivastava O K and Secco E A 1967 Canadian J. Chem. 45 1375CrossRefGoogle Scholar
  14. 14.
    Technisch Physische Dienst 1975 Delft, Netherlands: ICDD Grant-in-Aid JCPDS File No. 05-0640Google Scholar
  15. 15.
    Edwards D A, Wallace W E and Craig R S 1952 J. Am. Chem. Soc. 74 5256CrossRefGoogle Scholar
  16. 16.
    Yang J, Song W H, Zhang R L, Ma Y Q, Zhao B C, Sheng Z G et al 2004, Solid State Commun. 131 393CrossRefGoogle Scholar
  17. 17.
    Dakhel A A, El-Hilo M and Bououdina M 2014 Adv. Powder Technol. 25 1839CrossRefGoogle Scholar
  18. 18.
    Lewis E A, Le D, Murphy C J, Jewell A D, Mattewra M F G, Liriano M L et al 2012, J. Phys. Chem. C 116 25868CrossRefGoogle Scholar
  19. 19.
    Pozzo M and Alfe D 2009 Int. J. Hydrogen Energy 34 1922CrossRefGoogle Scholar
  20. 20.
    Schlapbach L 1980 J. Phys. F: Met. Phys. 10 2477CrossRefGoogle Scholar
  21. 21.
    Morales A E, Mora E S and Pal U 2007 Rev. Mexicana Fis. S 53 18Google Scholar
  22. 22.
    Sahin B, Bayansal F, Yuksel M and Cetinkara H A 2014 Mater. Sci. Semicond. Proc. 18 135CrossRefGoogle Scholar
  23. 23.
    Burstein E 1954 Phys. Rev. 93 632CrossRefGoogle Scholar
  24. 24.
    Chandiramouli R and Jeyaprakash B G 2013 Solid State Sci. 16 102CrossRefGoogle Scholar
  25. 25.
    Bououdina M, Dakhel A A, El-Hilo M, Anjum D H, Kanoun M B and Goumri-Said S 2015 RSC Adv. 5 33233CrossRefGoogle Scholar
  26. 26.
    Seo S Y, Kwak C H, Kim S H, Park S H, Lee I J and Han S W 2012 J. Cryst. Growth 346 56CrossRefGoogle Scholar
  27. 27.
    Raghavan V 2004 Materials science and engineering: a first course 5th edn (New Delhi: Prentic-Hall of India Private Limited), p 406Google Scholar
  28. 28.
    Kaminski A and Sarma S D 2002 Phys. Rev. Lett. 88 247CrossRefGoogle Scholar
  29. 29.
    Wolff P A, Bhatt R N and Durst A C 1996 J. Appl. Phys. 79 51CrossRefGoogle Scholar
  30. 30.
    Cheng Shun-Jen 2005, Phys. Rev. B 72 235332CrossRefGoogle Scholar
  31. 31.
    Tolea F, Grecu M N, Kuncser V, Constantinescu S G. and Ghica D 2015 Appl. Phys. Lett. 106 142404CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainBahrainKingdom of Bahrain

Personalised recommendations