Bulletin of Materials Science

, Volume 39, Issue 6, pp 1569–1579 | Cite as

Synthesis, structure and spectroscopic characteristics of Ti(O,C)2/carbon nanostructured globules with visible light photocatalytic activity



A morphology-controlled facile synthesis of titanium-glycolate precursors with subsequent annealing in He and air atmospheres has been exploited for the production of nanostructured composite globules, whiskers and plates of C-modified titanium dioxide. Characterisation tests proved the as-obtained globule composites to exclusively exhibit high-specific surface area (up to 150–170 m2 g−1), thus being useful for photocatalytic applications in the visible-light region. The combination of the electron paramagnetic resonance, X-ray photoelectron spectroscopy, absorption spectroscopy and transmission electron microscopy revealed the presence of three kinds of carbon in the globules: a small bandgap (with measured width of 0.8 eV) amorphous carbon surrounding the anatase nanocrystallites, C-containing radicals including carbonates on the surface of TiO2 and interstitial carbon in the oxygen position of the TiO2 lattice. It was found that the maximum visible-light photocatalytic activity of the globules is determined by the optimal surface concentration of amorphous carbon of about 0.002 wt.% m−2. Under these conditions, the highest synergic photosensitising effect on TiO2 nanocrystallites of all three kinds of carbon is expected.


Carbon-modified titanium dioxide synthesis nanostructure spectroscopy optical and photocatalytic properties 



We are grateful to N G Popova, the Foreign Languages Department of the Institute of Law and Philosophy, the Ural Branch of RAS, for the help in preparing the English version of the manuscript. This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-00265-a).


  1. 1.
    Hashimoto K, Irie H and Fugishima A 2005 Japn. J. Appl. Phys. 44 8269CrossRefGoogle Scholar
  2. 2.
    Zaleska 2008, Recent Patents on Engineering 2 157CrossRefGoogle Scholar
  3. 3.
    Yu H, Irie H and Hashimoto K 2010 J. Am. Chem. Soc. 132 6898CrossRefGoogle Scholar
  4. 4.
    Hsiao Y C, Wu T F, Wang Y C, Hu C C and Huang C 2014 Appl. Catal. B: Environ. 148–149 250CrossRefGoogle Scholar
  5. 5.
    Lazar M A, Varghese S and Nair S S 2012 Catalysis 2 572Google Scholar
  6. 6.
    Leary R and Westwood A 2011 Carbon 49 741CrossRefGoogle Scholar
  7. 7.
    Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G et al 2012, Appl. Catal. B: Environ. 125 331CrossRefGoogle Scholar
  8. 8.
    Reddy K M, Baruwati B, Jayalakshmi M, Rao M M and Manorama S V 2005 J. Solid State Chem. 178 3352CrossRefGoogle Scholar
  9. 9.
    Wang Y, Huang Y, Ho W, Zhang L, Zou Z and Lee S 2009 , J. Hazard. Mater. 169 77CrossRefGoogle Scholar
  10. 10.
    Zhong J, Chen F and Zhang J L 2010 J. Phys. Chem. C 114 933CrossRefGoogle Scholar
  11. 11.
    Liu Y, Liu X, Lu D, Fang P, Xiong R, Wie J and Pan C 2014 J. Mol. Catal. A: Chem. 392 208CrossRefGoogle Scholar
  12. 12.
    Wu Z B, Dong F, Zhao W R, Wang H Q, Liu Y and Guan B H 2009 Nanotechnology 20 235701CrossRefGoogle Scholar
  13. 13.
    Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X and Zou Z G 2007 Appl. Catal. B: Environ. 69 138CrossRefGoogle Scholar
  14. 14.
    Wu X, Yin S, Dong Q and Sato T 2014 Appl. Catal. B: Environ. 156–157 257CrossRefGoogle Scholar
  15. 15.
    Wang X, Hu Z, Chen Y, Zhao G, Liu Y and Wen Z 2009 Appl. Surf. Sci. 255 3953CrossRefGoogle Scholar
  16. 16.
    Asilturk M and Sener S 2012 Chem. Eng. J. 180 354CrossRefGoogle Scholar
  17. 17.
    Tryba B, Morawski A W and Inagaki M 2003 Appl. Catal. B: Environ. 41 427CrossRefGoogle Scholar
  18. 18.
    Gianluca L P, Bono A, Krishnaiah D and Collin J G 2008 , J. Hazard. Mater. 157 209CrossRefGoogle Scholar
  19. 19.
    Stefik M, Lee J and Wiesner U 2009 Chem. Commun. 18 2532CrossRefGoogle Scholar
  20. 20.
    Lee Y F, Chang K H, Hu C C and Lin K M 2010 J. Mater. Chem. 20 5682CrossRefGoogle Scholar
  21. 21.
    Tang G, Liu S, Tang H, Zhang D, Li C and Yang X 2013 Ceram. Intern. 39 4969CrossRefGoogle Scholar
  22. 22.
    Du J, Chen W, Zhang C, Liu Y, Zhao C and Dai Y 2011 Chem. Eng. J. 170 53CrossRefGoogle Scholar
  23. 23.
    Ma Y, Ji G, Ding B and Lee J Y 2012 J. Mater. Chem. 22 24380CrossRefGoogle Scholar
  24. 24.
    Zhang B, Chen B, Shi K, He S, Liu X, Du Z et al 2003, Appl. Catal. B: Environ. 40 253CrossRefGoogle Scholar
  25. 25.
    Chen D, Jiang Z, Geng J, Wang Q and Yang D 2007 Ind. Eng. Chem. Res. 46 2741CrossRefGoogle Scholar
  26. 26.
    Park Y, Kim W, Park H, Tachikawa T, Majima T and Choi W 2009 Appl. Catal. B: Environ. 91 355CrossRefGoogle Scholar
  27. 27.
    Wang D, Yu R, Chen Y, Kumada N, Kinomura N and Takano M 2004 Solid State Ionics 172 101CrossRefGoogle Scholar
  28. 28.
    Zhong L S, Hu J S, Wan L J and Song W G 2008 Chem. Commun. 10 1184CrossRefGoogle Scholar
  29. 29.
    Krasil’nikov V N, Shtin A P, Gyrdasova O I, Polyakov E V and Shveikin G P 2008 Russ. J. Inorg. Chem. 53 1065CrossRefGoogle Scholar
  30. 30.
    Dong S, Chen X, Gu L, Zhou X, Xu H, Wang H et al 2011, Appl. Mater. Interfaces 3 93CrossRefGoogle Scholar
  31. 31.
    Krasil’nikov V N, Zhukov V P, Baklanova I V, Gyrdasova O I and Buldakova L Y. 2015, Catal. Lett. 145 1290CrossRefGoogle Scholar
  32. 32.
    Barklie R C 2010 Diam. Relat. Mater. 10 174CrossRefGoogle Scholar
  33. 33.
    Ristein J, Schafer J and Ley L 1995 Diam. Relat. Mater. 4 508CrossRefGoogle Scholar
  34. 34.
    Tamor M A, Haire J A, Wu C H and Hass K C 1989 Appl. Phys. Lett. 54 123CrossRefGoogle Scholar
  35. 35.
    Krasil’nikov V N, Shtin A P, Gyrdasova O I, Polyakov E V, Buldakova L Yu, Yanchenko M Yu et al 2010, Russ. J. Inorg. Chem. 55 1184CrossRefGoogle Scholar
  36. 36.
    Shubnikov A V and Sheftal N N 1966 Growth of crystals (New York: Consultants Bureau)Google Scholar
  37. 37.
    Ferrari A C and Robertson J 2001 Phys. Rev. B 64 075414CrossRefGoogle Scholar
  38. 38.
    Kausteklis J, Cevc P, Arcon D, Nasi L, Pontiroli D, Mazzani M and Ricco M 2011 Phys. Rev. B 84 125406CrossRefGoogle Scholar
  39. 39.
    Bardeleben H J, Cantin J L, Zellama K and Zeinert A 2003 Diam. Relat. Mater. 12 124CrossRefGoogle Scholar
  40. 40.
    Konstantinova E A, Kokorin A I, Sakthivel S, Kisch H and Lips K 2007 Chimia 61 810CrossRefGoogle Scholar
  41. 41.
    Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V et al 2012, Nanotechnology 23 294003CrossRefGoogle Scholar
  42. 42.
    Yang K, Dai Y, Huang B and Whangbo M H 2009 J. Phys. Chem. C 113 2624CrossRefGoogle Scholar
  43. 43.
    Zaynullina V, Zhukov V, Krasil’nikov V, Yanchenko M, Buldakova L and Polyakov E 2010 Phys. Solid State 52 271CrossRefGoogle Scholar
  44. 44.
    Green J, Carter E and Murphy D M 2009 Chem. Phys. Lett. 477 340CrossRefGoogle Scholar
  45. 45.
    Haerle R, Riedo E, Pasquarello A and Baldereschi A 2001 Phys. Rev. B 65 045101CrossRefGoogle Scholar
  46. 46.
    Sakthivel S and Kisch H 2003 Angew. Chem. Int. Ed. 42 4908CrossRefGoogle Scholar
  47. 47.
    Gu D, Lu Y, Yang B C and Hu Y D 2008 Chem. Commun. 21 2453CrossRefGoogle Scholar
  48. 48.
    Tauc J, Grigorovici R and Vancu A 1966 Phys. Stat. Sol.(b) 15 627CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussian Federation
  2. 2.Institute of Electrophysics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussian Federation

Personalised recommendations