Skip to main content
Log in

Microstructure and oxidation behaviour of TiAl(Nb)/Ti2AlC composites fabricated by mechanical alloying and hot pressing

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TiAl-based intermetallic matrix composites with dispersed Ti2AlC particles and different amounts of Nb were successfully synthesized by mechanical alloying and hot pressing. The phase evolution of Ti–48 at%. Al elemental powder mixture milled for different times with hexane as a process control agent was investigated. It was found that after milling for 25 h, a Ti(Al) solid solution was formed; also with increase in the milling time to 50 h, an amorphous phase was detected. Formation of a supersaturated Ti(Al) solid solution after 75 h milling was achieved by crystallization of amorphous phase. Addition of Nb to system also exhibited a supersaturated Ti(Al,Nb) solid solution after milling for 75 h, implying that the Al and Nb elements were dissolved in the Ti lattice in a non-equilibrium state. Annealing of 75 h milled powders resulted in the formation of equilibrium TiAl intermetallic with Ti2AlC phases that showed the carbon that originates from hexane, participated in the reaction to form Ti2AlC during heating. Consolidation of milled powder with different amounts of Nb was performed by hot pressing at 1000°C for 1 h. Only the presence of γ-TiAl and Ti2AlC was detected and no secondary phases were observed on the base of Nb. Displacement of γ-TiAl peaks with Nb addition implied that the Nb element was dissolved into TiAl matrix in the form of solid solution, causing the lattice tetragonality of TiAl to increase slightly. The values for density and porosity of samples indicated that condition of hot pressing process with temperature and pressure was adequate to consolidate almost fully densified samples. The isothermal oxidation test was carried out at 1000°C in air to assess the effect of Nb addition on the oxidation behaviour of TiAl/Ti2AlC composites. The oxidation resistance of composites was improved with the increase in the Nb content due to the suppression of TiO2 growth, the formation and stabilization of nitride in the oxide scale and better scale spallation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wei Z, Yong L, Bin L, Hui-Zhong L and Bei T 2010 Trans. Nonferrous Met. Soc. China 20 547

    Article  Google Scholar 

  2. Liu Q and Nash P 2011 Intermetallics 19 1282

    Article  Google Scholar 

  3. Kothari K, Radhakrishnan R and Wereley N M 2012 Prog. Aerosp. Sci. 55 1

    Article  Google Scholar 

  4. Du H L, Datta P K, Hu D and Wu X 2007 Corros. Sci. 49 2406

    Article  Google Scholar 

  5. Shu S, Qiu F, Xing B, Jin S, Wang Y and Jiang Q 2012 Intermetallics 28 65

    Article  Google Scholar 

  6. Yoshihara M and Kim Y W 2005 Intermetallics 13 952

    Article  Google Scholar 

  7. Chen Y, Niu H, Kong F and Xiao S 2011 Intermetallics 19 1405

    Article  Google Scholar 

  8. Appel F, Christoph U and Oehring M 2002 Mater. Sci. Eng. A329–331 780

    Article  Google Scholar 

  9. Zhi-Guang L, Yu-Yong C, Li-Hua C, Fan-Tao K and Davies H A 2006 Trans. Nonferrous Met. Soc. China 16 711

    Article  Google Scholar 

  10. Zhang W J and Appel F 2002 Mater. Sci. Eng. A329–331 649

    Article  Google Scholar 

  11. Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F and Chen G L 2011 Intermetallics 19 131

    Article  Google Scholar 

  12. Farhang M, Kamali A and Nazarian-Samani M 2010 Mater. Sci. Eng. B 168 136

    Article  Google Scholar 

  13. Shu-Long X, Li-Juan X, Yu-Yong C and Hong-Bao Y 2012 Trans. Nonferrous Met. Soc. China 22 1086

    Article  Google Scholar 

  14. Wen-Bin F, Xue-Wen L, Hong-Fei S and Yong-Feng D 2011 Trans. Nonferrous Met. Soc. China 21 333

    Article  Google Scholar 

  15. Bhattacharya P, Bellon P, Averback R S and Hales S J 2004 J. Alloys Compnd. 368 187

    Article  Google Scholar 

  16. Liu B, Liu Y, Zhang W and Huang J S 2011 Intermetallics 19 154

    Article  Google Scholar 

  17. Ramaseshan R, Kakitsuji A, Seshadri S K, Nair N G, Mabuchi H, Tsuda H et al 1999 Intermetallics 7 571

    Article  Google Scholar 

  18. Zhu J, Yang W, Yang H and Wang F 2011 Mater. Sci. Eng. A 528 6642

    Article  Google Scholar 

  19. Alamolhoda S, Heshmati-Manesh S and Ataie A 2012 Adv. Powder Technol. 23 343

    Article  Google Scholar 

  20. Niu H Z, Xiao S L, Kong F T, Zhang C J and Chen Y Y 2012 Mater. Sci. Eng. A 532 522

    Google Scholar 

  21. Peng L M, Li Z, Li H, Wang J H and Gong M 2006 J. Alloys Compnd. 414 100

    Article  Google Scholar 

  22. Li Z W, Gao W, Zhang D L and Cai Z H 2004 Corros. Sci. 46 1997

    Article  Google Scholar 

  23. Yeh C L and Shen Y G 2009 Intermetallics 17 169

    Article  Google Scholar 

  24. Mei B and Miyamoto Y 2002 Mater. Chem. Phys. 75 291

    Article  Google Scholar 

  25. Hashimoto S, Nishina N, Hirao K, Zhou Y, Hyuga H, Honda S and Iwamoto Y 2012 Mater. Res. Bull. 47 1164

    Article  Google Scholar 

  26. Shu S, Qiu F, Lü S, Jin S and Jiang Q 2012 Mater. Sci. Eng. A 539 344

    Article  Google Scholar 

  27. Gu D, Wang Z, Shen Y, Li Q and Li Y 2009 Appl. Surf. Sci. 255 9230

    Article  Google Scholar 

  28. Vyas A, Rao K P and Prasad Y V R K 2009 J. Alloys Compnd. 475 252

    Article  Google Scholar 

  29. Yang F, Kong F T, Chen Y Y and Xiao S L 2010 J. Alloys Compnd. 496 462

    Article  Google Scholar 

  30. Suryanarayana C 2001 Prog. Mater. Sci. 46 1

    Article  Google Scholar 

  31. Keskinen J, Pogany A, Rubin J and Ruuskanen P 1995 Mater. Sci. Eng. A 196 205

    Article  Google Scholar 

  32. Cullity B D 1969 Elements of X-ray diffraction (Reading, MA: Addison-Welsey)

    Google Scholar 

  33. Forouzanmehr N, Karimzadeh F and Enayati M H 2009 , J. Alloys Compnd. 471 93

    Article  Google Scholar 

  34. Fadeeva V I, Leonov A V, Szewczak E and Matyja H 1998 Mater. Sci. Eng. A 242 230

    Article  Google Scholar 

  35. Erschbaumer H, Podloucky R, Rogl P and Temnitschka G 1993 Intermetallics 1 99

    Article  Google Scholar 

  36. Chang S Y 2007 J. Mater. Eng. Perform. 16 508

    Article  Google Scholar 

  37. Reddy R G, Wen X and Divakar M 2001 Metall. Mater. Trans. A 32 2357

    Article  Google Scholar 

  38. Vojtech D, Popela T, Kubasek J, Maixner J and Novak P 2011 Intermetallics 19 493

    Article  Google Scholar 

  39. Schutze M and Hald M 1997 Mater. Sci. Eng. A 239–240 847

    Article  Google Scholar 

  40. Perez P, Jimenez J A, Frommeyer G and Adeva P 2000 Mater. Sci. Eng. A 284 138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALI GHASEMI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KARIMI, H., GHASEMI, A. & HADI, M. Microstructure and oxidation behaviour of TiAl(Nb)/Ti2AlC composites fabricated by mechanical alloying and hot pressing. Bull Mater Sci 39, 1263–1272 (2016). https://doi.org/10.1007/s12034-016-1268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1268-x

Keywords

Navigation