Advertisement

Bulletin of Materials Science

, Volume 39, Issue 1, pp 195–200 | Cite as

Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases

  • A LEKHAL
  • F Z BENKHELIFA
  • S MÉÇABIHEmail author
  • B ABBAR
  • B BOUHAFS
Article

Abstract

The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crystallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA). The calculated lattice parameters were in good agreement with experiment. Also, the structural and electronic properties of the non-magnetic half-Heusler YAuPb compound including the artificial YAuX (X = Ge and Si) calculated in cubic phase were determined. It was found that the half-Heusler YAuPb compound presented metallic character. The results showed that YAuGe in cubic phase is a semiconductor whereas the cubic YAuSi is an isolator.

Keywords

DFT FP-LAPW intermetallics electronic structure density of states. 

References

  1. 1.
    Hoffmann R D and Pöttgen R 2001 Z. Kristallogr. 216 127Google Scholar
  2. 2.
    Pöttgen R and Johrendt D 2000 Chem. Mater. 12 875CrossRefGoogle Scholar
  3. 3.
    Dhar S K, Nabudripad N and Vijayaraghavan R 1988 J. Phys. F: Met. Phys. 18 L41CrossRefGoogle Scholar
  4. 4.
    Karla I, Pierre J and Ouladdiaf B 1998 Physica B 253 215CrossRefGoogle Scholar
  5. 5.
    Fuji H, Uwatoko Y, Akayama M, Satoh K, Maeno Y, Fujita T, Sakurai J, Kanimura H and Okamoto T 1987 Jpn. J. Appl. Phys. (Suppl.) 26 549CrossRefGoogle Scholar
  6. 6.
    Slebarski A, Glogowski W, Jezierski A, Czopnik A and Zygmunt A 2004 Phys. Rev. B 70 184429CrossRefGoogle Scholar
  7. 7.
    Adroja D T, Malik S K, Padalia S N, Walia R and Vijayaraghavan 1990, Phys. Rev. B 42 2700CrossRefGoogle Scholar
  8. 8.
    Canepa F and Cirafici S 1996 J. Alloys Compd. 232 71CrossRefGoogle Scholar
  9. 9.
    Cirafici S, Palenzona and Canepa 1985, J. Less-Common Met. 107 179CrossRefGoogle Scholar
  10. 10.
    Felser C, Cramm S, Johrendt D, Mewis A, Jepsen O, Hohlneicher G, Eberhardt W and Andersen O K 1997 , Europhys. Lett. 40 85CrossRefGoogle Scholar
  11. 11.
    Ksenofontov V, Kandpal Hem C, Ensling J, Waldeck M, Johrendt D, Mewis A, Gütlich P and Felser C 2006 Europhys. Lett. 74 672CrossRefGoogle Scholar
  12. 12.
    Takabatake T, Nakazawa Y and Ishikawa 1987, Jpn. J. Appl. Phys. (Suppl.) 26 547CrossRefGoogle Scholar
  13. 13.
    Pierre J, Karla I and Kaczmarska K 1999 Physica B 259 845CrossRefGoogle Scholar
  14. 14.
    Malik S K, Takeya H and Gschneider K A 1993 J. Phys. Rev. B 48 9858CrossRefGoogle Scholar
  15. 15.
    Baran S, Leciejewicz J, Hofmann P and Szytula A 1998 J. Alloys Compd. 275 541CrossRefGoogle Scholar
  16. 16.
    Baran S, Leciejewicz J, Stüsser M, Szytula A and Tomkowicz Z 1997 Solid State Commun. 101 631CrossRefGoogle Scholar
  17. 17.
    Baran S, Leciejewicz J, Stüsser M, Szytula A, Zygmunt A and Ivanov V 1996 J. Phys.: Condens. Matter. 8 8397Google Scholar
  18. 18.
    Fornasini M L, Iandelli A and Pani M 1992 J. Alloys Compd. 187 243CrossRefGoogle Scholar
  19. 19.
    Schnelle W, Pöttgen R, Kremer R KGmelin E and Jepsen O 1997 J. Phys.: Condens. Matter 9 1435Google Scholar
  20. 20.
    Lin H, Andrew Wray L, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546CrossRefGoogle Scholar
  21. 21.
    Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438CrossRefGoogle Scholar
  22. 22.
    Qi X L and Zhang S C 2010 Phys. Today 63 33CrossRefGoogle Scholar
  23. 23.
    Moore J E 2010 Nature 464 194CrossRefGoogle Scholar
  24. 24.
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045CrossRefGoogle Scholar
  25. 25.
    Hohenberg P and Kohn W 1964 Phys. Rev. B 64 136Google Scholar
  26. 26.
    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented-plane-wave + local orbitals program for calculating crystal properties (Wien, Austria: Karlheinz Schwarz, Techn.) ISBN 3-9501031-1-2Google Scholar
  27. 27.
    Perdew J P, Burke S and Ernwerhof M 1996 Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  28. 28.
    Rath J and Freeman A J 1975 Phys. Rev. B 11 2109CrossRefGoogle Scholar
  29. 29.
    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390Google Scholar
  30. 30.
    Pöttgen R, Borrmann H, Felser C, Jepsen O, Henn R, Kremer R and Simon K 1996 J. Alloys Compd. 235 170CrossRefGoogle Scholar
  31. 31.
    Landelli A 1983 J. Less-Common. Met. 90 123Google Scholar
  32. 32.
    Mungli A, Albinati A and Hewat A W 1984 J. Less-Common. Met. 97 L1CrossRefGoogle Scholar
  33. 33.
    Marazza R, Rossi D and Ferro R 1988 J. Less-Common. Met. 138 189CrossRefGoogle Scholar
  34. 34.
    Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208CrossRefGoogle Scholar
  35. 35.
    Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • A LEKHAL
    • 1
  • F Z BENKHELIFA
    • 1
  • S MÉÇABIH
    • 1
    Email author
  • B ABBAR
    • 1
  • B BOUHAFS
    • 1
  1. 1.Laboratoire de Modélisation et de Simulation en Sciences des Matériaux, Département de Physique, Faculté des SciencesUniversité Djillali LiabèsSidi Bel AbbesAlgeria

Personalised recommendations