Bulletin of Materials Science

, Volume 38, Issue 6, pp 1569–1576 | Cite as

Effects of reduction time on the structural, electrical and thermal properties of synthesized reduced graphene oxide nanosheets

  • JUHANA JAAFAREmail author


The reduction of graphene oxide (GO) nanosheet is a promising route to produce a stable colloidal dispersion of reduced graphene oxide (RGO) nanosheets in a large scale. The production of RGO nanosheet is one of the important topics in nanotechnology disciplines due to its contribution in various applications, such as the platinum catalyst support in direct methanol fuel cell. Therefore, in this paper, the RGO nanosheets were prepared via highly efficient chemical reduction reaction of exfoliated GO nanosheets using sodium oxalate (Na2C2O4) as the reducing agent. Extensive characterizations have been conducted in terms of structural, thermal stability and electrical conductivity properties by means of high-resolution transmission microscopy, the Fourier transform infrared spectroscopy, UV–visible spectroscopy, 13C NMR and four-point probe conductivity measurement. The results indicate that most of oxygen-containing functional groups from GO nanosheets have been removed and the RGO-3 possess greater thermal stability compared to GO nanosheets. The prepared RGO-3 shows the highest electrical conductivity at room temperature which is ∼2.0 × 103 S cm−1. Based on these analyses, the plausible mechanism of reduction of GO to RGO by sodium oxalate is well proposed.


Reduced graphene oxide nanosheets graphene oxide nanosheets sodium oxalate thermal stability electrical conductivity. 



We would like to acknowledge the Ministry of Education Malaysia and Ministry of Science Technology and Innovation (MOSTI), for the financial support under Fundamental Research Grant scheme (Vot.R.J130000.7809.4F592) and Science fund Grant (Vot.R.J130000.7942.4S057), respectively. Special thanks to Madam Hamitul Asma Ghazali, Associate Prof Dr Farediah Ahmad and Prof Dr Mustaffa Shamsuddin for their assistance.


  1. 1.
    Aziz M, Halim F S A and Jaafar J 2014 J. Teknol. 69 11Google Scholar
  2. 2.
    Zhang Y, Shu H, Chang G, Ji K, Oyama M, Liu X and He Y 2013 Electrochim. Acta 109 570CrossRefGoogle Scholar
  3. 3.
    Ji K, Chang G, Oyama M, Shang X, Liu X and He Y 2012 Electrochim. Acta 85 84CrossRefGoogle Scholar
  4. 4.
    Ma C, Liu W, Shi M, Lang X, Chu Y, Chen Z, Zhao D, Lin W and Hardacre C 2013 Electrochim. Acta 114 133CrossRefGoogle Scholar
  5. 5.
    Seger B and Kamat P V 2009 J. Phys. Chem. C 113 7990CrossRefGoogle Scholar
  6. 6.
    Qian Y, Wang C and Le Z -G 2011, Appl. Surf. Sci. 257 10758CrossRefGoogle Scholar
  7. 7.
    Zhang M, Xi J, Sun Q, Yan Z, Chen M and Jing J 2013 Int. J. Hydrogen Energy 38 16402CrossRefGoogle Scholar
  8. 8.
    Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385CrossRefGoogle Scholar
  9. 9.
    Service R F 2009 Science 324 875CrossRefGoogle Scholar
  10. 10.
    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902CrossRefGoogle Scholar
  11. 11.
    Jin Y, Huang S, Zhang M, Jia M and Hu D 2013 Appl. Surf. Sci. 268 541CrossRefGoogle Scholar
  12. 12.
    Amarnath C A, Hong C E, Kim N H, Ku B -C, Kuila T and Lee J H 2011 Carbon 49 3497CrossRefGoogle Scholar
  13. 13.
    Pham T A, Kim J S and Jeong Y T 2011 J. Colloids Surf. A: Physicochem. Eng. Aspects 384 543CrossRefGoogle Scholar
  14. 14.
    Ji Y, Liu Q, Cheng M, Lai L, Li Z, Peng Y and Yang Y 2013 J. Mater. Sci. Eng. C 33 3811CrossRefGoogle Scholar
  15. 15.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J and Guo S 2010 Chem. Commun. 46 1112CrossRefGoogle Scholar
  16. 16.
    Gao J, Liu F, Liu Y, Ma N, Wang Z and Zhang X 2010 Chem. Mater. 22 2213CrossRefGoogle Scholar
  17. 17.
    Hanifah M F R, Jaafar J, Aziz M, Ismail A F, Othman M H D, Rahman M A, Norddin M N A M, Yusof N and Salleh W N W 2015 Funct. Mater. Lett. 8 15500261CrossRefGoogle Scholar
  18. 18.
    Hanifah M F R, Jaafar J, Aziz M, Ismail A F, Rahman M and Othman M H D 2015 J. Teknol. (Sci. Eng.) 74 195Google Scholar
  19. 19.
    Sahoo S, Dhibar S, Hatui G, Bhattacharya P and Das C K 2013 Polymer 54 1033CrossRefGoogle Scholar
  20. 20.
    Wade L G Jr 2010 Organic chemistry (USA: Pearson Education) 7th edGoogle Scholar
  21. 21.
    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558CrossRefGoogle Scholar
  22. 22.
    Wang G, Yang J, Park J, Gou X, Wang B, Liu H and Yao J 2008 J. Phys. Chem. C 112 8192CrossRefGoogle Scholar
  23. 23.
    Liu P, Huang Y and Wang L 2013 Synth. Met. 167 25CrossRefGoogle Scholar
  24. 24.
    Mitra M, Chatterjee K, Kargupta K, Ganguly S and Banerjee D 2013 Diam. Relat. Mater. 37 74CrossRefGoogle Scholar
  25. 25.
    Shin H J, Kim K K, Benayad A et al 2009, Adv. Funct. Mater. 19 1987CrossRefGoogle Scholar
  26. 26.
    Pham V H, Pham H D, Dang T T, Hur S H, Kim E J, Kong B S, Kim S and Chung J S 2012 J. Mater. Chem. 22 10530CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

    • 1
    • 2
    • 1
    Email author
    • 2
    • 1
    • 1
    • 1
  1. 1.Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy EngineeringUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaJohorMalaysia

Personalised recommendations