Advertisement

Bulletin of Materials Science

, Volume 38, Issue 4, pp 817–823 | Cite as

Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

  • RITU GUPTA
  • HIMA K NAGAMANASA
  • RAJESH GANAPATHY
  • GIRIDHAR U KULKARNIEmail author
Article

Abstract

A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic temperature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

Keywords

Stability viscoelastic poly(dimethylsiloxane) Au nanoparticles gels crosslinking 

Notes

Acknowledgements

We thank Professor CNR Rao for his encouragement. Support from the Department of Science and Technology, Government of India, is gratefully acknowledged. RG thanks ICMS, JNCASR for financial support. Thanks to K Veeresh and Swati (CPMU, JNCASR) for their assistance in gel preparation and B Vanitha for manuscript formatting.

Electronic Supplementary Material

Electronic Supplementary Material Supplementary Material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Supplementary material

12034_2015_957_MOESM1_ESM.docx (4.9 mb)
(DOCX 4.94 MB)

References

  1. 1.
    Takahashi H, Ishimuro Y and Watanabe H 2006 Nihon Reoroji Gakk 34 135Google Scholar
  2. 2.
    Mark J E 2004 Acc. Chem. Res. 37 946Google Scholar
  3. 3.
    Rajan G, Sur G, Mark J, Schaefer D and Beaucage G 2003 J. Polym. Sci. Pol. Phys. 41 1897Google Scholar
  4. 4.
    Qin D, Xia Y and Whitesides G M 2010 Nat. Protoc. 5 491Google Scholar
  5. 5.
    Lacour S P, Wagner S, Huang Z and Suo Z 2003 Appl. Phys. Lett. 82 2404Google Scholar
  6. 6.
    Adrega T and Lacour S P 2010 J. Micromech. Microeng. 20 055025Google Scholar
  7. 7.
    Buyl F D 2001 Int. J. Adhes. Adhes. 21 411Google Scholar
  8. 8.
    Rosen M R 2005 Delivery system handbook for personal care and cosmetic products: technology, applications and formulations (Norwich, NY: William Andrew Publishing) ISBN: 978-0-8155-1504-3Google Scholar
  9. 9.
    Kumar S K and Krishnamoorti R 2010 Annu. Rev. Chem. Biomol. Eng. 1 37Google Scholar
  10. 10.
    Niu X Z, Peng S L, Liu L Y, Wen W J and Sheng P 2007 Adv. Mater. 19 2682Google Scholar
  11. 11.
    Cong H and Pan T 2008 Adv. Funct. Mater. 18 1912Google Scholar
  12. 12.
    Kujawski M, Pearse J D and Smela E 2010 Carbon 48 2409Google Scholar
  13. 13.
    Zhang Y, Sheehan C J, Zhai J, Zou G, Luo H, Xiong J, Zhu Y T and Jia Q X 2010 Adv. Mater. 22 3027Google Scholar
  14. 14.
    Hong J, Lee J, Hong C K and Shim S E 2010 Curr. Appl. Phys. 10 359Google Scholar
  15. 15.
    Liu C H and Fan S S 2005 Appl. Phys. Lett. 86 123106Google Scholar
  16. 16.
    Mackay M E 2006 Science 311 1740Google Scholar
  17. 17.
    Kayatin M J and Davis V A 2009 Macromolecules 42 6624Google Scholar
  18. 18.
    Moreira L, Fulchiron R, Seytre G, Dubois P and Cassagnau P 2010 Macromolecules 43 1467Google Scholar
  19. 19.
    Anderson B J and Zukoski C F 2010 Langmuir 26 8709Google Scholar
  20. 20.
    Huang Y Y, Ahir S V and Terentjev E M 2006 Phys. Rev. B 73 125422Google Scholar
  21. 21.
    Bokobza L and Diop A L 2010 Express Polym. Lett. 4 355Google Scholar
  22. 22.
    Austin J R and Kontopoulou M 2006 Polym. Eng. Sci. 46 1491Google Scholar
  23. 23.
    Guimont A, Beyou E, Martin G, Sonntag P and Cassagnau P 2011 Macromolecules 44 3893Google Scholar
  24. 24.
    Marceau S, Dubois P, Fulchiron R and Cassagnau P 2011 Macromolecules 44 3893Google Scholar
  25. 25.
    Takahashi H, Ishimuro Y and Watanabe H 2007 Nihon Reoroji Gakk 35 191Google Scholar
  26. 26.
    Scott A, Gupta R and Kulkarni G U 2010 Macromol. Chem. Phys. 211 1640Google Scholar
  27. 27.
    Muñoz P, Patricia M A and Vargas M D 2001 J. Appl. Polym. Sci. 82 3460Google Scholar
  28. 28.
    Zhang Q, Xu J J, Liu Y and Chen H Y 2008 Lab. Chip 8 352Google Scholar
  29. 29.
    Zhang Q, Xu J J, Liua Y and Chen H Y 2008 Lab. Chip 8 352Google Scholar
  30. 30.
    Goyal A, Kumar A, Patra P K, Mahendra S, Tabatabaei S, Alvarez P. J J, John G and Ajayan P M 2009 Rapid Commun. 30 1116Google Scholar
  31. 31.
    Rau K R, Singh R and Goldberg E 2002 Mat. Res. Innovat. 5 162Google Scholar
  32. 32.
    Cai D and Neyer A 2010 Microfluid Nanofluid 9 855Google Scholar
  33. 33.
    Bhattacharya S, Srivastava A and Pal A 2006 Angew. Chem. Int. Ed. 45 2934Google Scholar
  34. 34.
    Thomas S and Stephen R 2009 Rubber nanocomposites: preparation, properties and applications (Wiley) ISBN: 978-0-470-82345-3Google Scholar
  35. 35.
    Walberer J A and McHugh A J 2001 J. Rheol. 45 187Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  • RITU GUPTA
    • 1
  • HIMA K NAGAMANASA
    • 1
  • RAJESH GANAPATHY
    • 1
    • 2
  • GIRIDHAR U KULKARNI
    • 3
    Email author
  1. 1.Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.International Centre for Materials ScienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  3. 3.Centre for Nano and Soft Matter SciencesBangaloreIndia

Personalised recommendations