Bulletin of Materials Science

, Volume 38, Issue 3, pp 739–745 | Cite as

Synthesis of graphene using gamma radiations

  • ANJALI A ATHAWALEEmail author


Considering the advantages of radiolytic synthesis such as the absence of toxic chemical as a reducing agent, uniform distribution of reducing agent and high purity of product, the synthesis of graphene (rGO) from graphene oxide (GO) by the gamma irradiation technique using a relatively low dose rate of 0.24 kGy h−1 has been described. Structural and physicochemical properties of GO and rGO were investigated with the help of various characterization techniques. The presence of peak at 271 nm in ultraviolet–visible spectrum, C = C aromatic stretching vibrations between 1450 and 1600 cm−1 in the Fourier transform infrared spectrum and significant decrease in photoluminescence peak intensity at 470 and 567 nm wavelengths represent the reduction of GO to graphene by gamma irradiation. The decrease in stacking height from 7.71 nm in GO to 3.52 nm in rGO as observed from the X-ray powder diffraction analysis further confirms the same. Raman spectra show significantly lower D to G band ratio for rGO compared with GO. Also, the cyclic voltammograms obtained using GO- and rGO-modified electrodes (working electrode) in standard redox system show enhanced peak intensities together with decrease in potential difference between oxidation and reduction peaks in case of graphene.


Graphene oxide gamma radiations reduction graphene 



We acknowledge financial supports provided by Department of Chemistry, University of Pune. CNQS, Department of Physics, University of Pune, for XRD, SEM, FTIR facilities, Prof Pavankumar, IISER, Pune, for Raman spectra and Prof Hedayatollah Ghourchian, University of Tehran, are gratefully appreciated for fruitful discussions.


  1. 1.
    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009, Nature 457 706CrossRefGoogle Scholar
  2. 2.
    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008, Nano Lett. 8 902CrossRefGoogle Scholar
  3. 3.
    Li D, Mülleri M B, Gilje S, Kaner R B and Wallace G G 2008, Nat. Nanotechnol. 3 101CrossRefGoogle Scholar
  4. 4.
    Segal M 2009, Nat. Nanotechnol. 4 612CrossRefGoogle Scholar
  5. 5.
    Jo G, Choe M, Lee S, Park W, Kahng Y H and Lee T 2012, Nanotechnology 23 112001CrossRefGoogle Scholar
  6. 6.
    Li Q, Guo B, Yu J, Ran J, Zhang B and Yan H 2011, J. Am. Chem. Soc. 133 10878CrossRefGoogle Scholar
  7. 7.
    Qian W, Hao R, Zhou J, Eastman M, Manhat B A, Sun Q, Goforth A M and Jiao J 2013, Carbon 52 595CrossRefGoogle Scholar
  8. 8.
    Yang J and Gunasekaran S 2013, Carbon 51 36CrossRefGoogle Scholar
  9. 9.
    Shao Y, Wang J, Wu H, Liu J and Aksay I A 2010, Electroanalysis 22 1027CrossRefGoogle Scholar
  10. 10.
    Liu F, Piao Y, Choi K and Seo T S 2012, Carbon 50 123CrossRefGoogle Scholar
  11. 11.
    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008, Science 320 356CrossRefGoogle Scholar
  12. 12.
    Geim A K and Novoselov K S 2007, Nat. Mater. 6 183CrossRefGoogle Scholar
  13. 13.
    Wintterlin J and Bocquet M L 2009, Surf. Sci. 603 1841CrossRefGoogle Scholar
  14. 14.
    Eizenberg M and Blakely J M 1979, Surf. Sci. 82 228CrossRefGoogle Scholar
  15. 15.
    Gilje S, Han S, Wang M, Kang K L and Kaner R B 2007, Nano Lett. 7 3394CrossRefGoogle Scholar
  16. 16.
    Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M and Kern K 2007, Nano Lett. 7 3499CrossRefGoogle Scholar
  17. 17.
    Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A and Aksay I A 2006, J. Phys. Chem. B 110 8535CrossRefGoogle Scholar
  18. 18.
    Niyogi S, Bekyarova E, Itikis M E, McWilliams J L, Hammon M A and Haddon R C 2006, J. Am. Chem. Soc. 128 7720CrossRefGoogle Scholar
  19. 19.
    Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T and Ruoff R S 2006, J. Mater. Chem. 16 155CrossRefGoogle Scholar
  20. 20.
    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007, Carbon 45 1558CrossRefGoogle Scholar
  21. 21.
    Si Y and Samulski E T 2008, Nano Lett. 8 1679CrossRefGoogle Scholar
  22. 22.
    Wang G, Yang J, Park J, Gou X, Wang B, Liu H and Yao J 2008, J. Phys. Chem. C 12 8192CrossRefGoogle Scholar
  23. 23.
    Henglein A and Meisel D 1998, Langmuir 14 7392CrossRefGoogle Scholar
  24. 24.
    Rao V M, Castano C H, Rojas J and Abdulghani A J 2013, Radiat. Phys. Chem. 84 39CrossRefGoogle Scholar
  25. 25.
    Rojas J V and Castano C H 2012, Radiat. Phys. Chem. 81 16CrossRefGoogle Scholar
  26. 26.
    Casaos A A, Puértolas J A, Pascual F J, Hernández-Ferrer J, Castell P, Benito A M, Maser W K and Martínez M T 2014, Appl. Surf. Sci. 301 264CrossRefGoogle Scholar
  27. 27.
    Safibonaba B, Reyhanib A, Nozad Golikandb A, Mortazavib S Z, Mirershadib S and Ghorannevissa M 2011, Appl. Surf. Sci. 258 766CrossRefGoogle Scholar
  28. 28.
    Zhang B, Li L, Wang Z, Xie S, Zhang Y, Shen Y, Yu M, Deng B, Huang Q, Fan C and Li J 2012, J. Mater. Chem. 22 7775CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Ma H, Zhang Q, Peng J, Li J, Zha M and Yu Z 2012, J. Mater. Chem. 22 13064CrossRefGoogle Scholar
  30. 30.
    Remita H, Lampre I, Mostafavi M, Balanzat E and Bouffard S 2005, Radiat. Phys. Chem. 72 575CrossRefGoogle Scholar
  31. 31.
    Krishnamoorthy K, Mohan R and Kim S J 2011, Appl. Phys. Lett. 98 244101CrossRefGoogle Scholar
  32. 32.
    Xu S., Yong L and Wu P 2013, ACS Appl. Mater. Interfaces 5 654CrossRefGoogle Scholar
  33. 33.
    Vasu K S, Chakraborty B, Sampath S and Sood A K 2010, Solid State Commun. 150 1295CrossRefGoogle Scholar
  34. 34.
    Qian W, Chen J, Wei L, Wu L and Chen Q A 2009, Nano 4 7CrossRefGoogle Scholar
  35. 35.
    Alam M S, Rao B S M and Janata E 2003, Radiat. Phys. Chem. 67 723CrossRefGoogle Scholar
  36. 36.
    Alam M S, Rao B S M and Janata E 2001, Phys. Chem. Chem. Phys. 3 2622CrossRefGoogle Scholar
  37. 37.
    Belloni J, Mostafavi M, Remita H, Marignier J L and Delcourt M O 1998, N. J. Chem. 22 1239CrossRefGoogle Scholar
  38. 38.
    Janata E 2002, Indian Acad. Sci. 114 731CrossRefGoogle Scholar
  39. 39.
    Guo H, Wang X, Qian Q, Wang F and Xia X 2009, ACS Nano 3 2653CrossRefGoogle Scholar
  40. 40.
    Shang J, Ma L, Li J, Ai W, Yu T and Gurzadyan G G 2012, Sci. Rep. 2 792CrossRefGoogle Scholar
  41. 41.
    Sheng Y, Tang X, Peng E and Xue J 2013, J. Mater. Chem. B 1 512CrossRefGoogle Scholar
  42. 42.
    Zhang L, Liang J, Huang Y, Ma Y, Wang Y and Chen Y 2009, Carbon 47 3365CrossRefGoogle Scholar
  43. 43.
    Hun Huh S 2011 Physics and applications of graphene – experiments, Mikhailov S (ed) Thermal reduction of graphene oxide (InTech) ISBN: 978-953-307-217-3Google Scholar
  44. 44.
    Saner S, Okyay F and Yürüm Y 2011, Fuel 90 2609CrossRefGoogle Scholar
  45. 45.
    Sakika B K, Boruah R K and Gogo P K 2007, J. Chem. Sci. 121 103CrossRefGoogle Scholar
  46. 46.
    Dong X, Li B, Wei A, Cao X, Chan-Park M B, Zhang H, Li L J, Huang W and Chen P 2011, Carbon 49 2944CrossRefGoogle Scholar
  47. 47.
    Dong X, Xing G, Chan-Park M B, Shi W, Xiao N, Wang J, Yan Q, Sum T C, Huang W and Chen P 2011, Carbon 49 5071CrossRefGoogle Scholar
  48. 48.
    Lin W J, Liao C S, Jhang J H and Tsai Y C 2009, Electrochem. Commun. 11 2153CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PunePuneIndia

Personalised recommendations