Bulletin of Materials Science

, Volume 38, Issue 2, pp 565–572 | Cite as

Cetyltrimethylammonium bromide–silica membrane for seawater desalination through pervaporation

  • PUYAM S SINGHEmail author


A simple preparation of mesostructured cetyltrimethylammonium bromide (CTAB)–silica membrane is reported. It effectively desalinates seawater to pure water through pervaporation separation process. The membrane thickness was of nanometer-length-scale obtained by deposition of CTAB–silica colloids on porous polysulfone support. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) studies were performed to characterize the membrane while the structure of the colloids in coating solution was probed by small-angle neutron scattering (SANS). The prepared membranes exhibited excellent salt rejection efficiency of 99.9% in desalination of synthetic seawater of 40,000 ppm NaCl by pervaporation at 25C. The pure water flux was in the range of 1–2.6 kg m−2 h depending upon the membrane configuration and thickness. The flux could be greatly enhanced by operating the process at higher temperatures of 40–80C but it was at the cost of decreased salt-rejection efficiency. The initial rejection efficiency and flux of the membrane was found to be restored upon cooling the membrane back to room temperature.


Seawater desalination cetyltrimethylammonium bromide–silica membrane pervaporation 



The financial assistance from Council of Scientific & Industrial Research (CSIR), India under the CSIR sponsored schemes of Raman Research Fellowship 2012–13 and CSIR-Empower project OLP-0048 and Bavarian Research Foundation, Germany are gratefully acknowledged. We thank Dr. Joachim Kohlbrecher, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland for the SANS measurements. A.M. Kansara is thankful to AcSIR for Ph.D. registration.


  1. 1.
    Elimelech M and Phillip W A 2011 Science 333 712Google Scholar
  2. 2.
    Karagiannis I C and Soldatos P G 2008 Desalination 223 448Google Scholar
  3. 3.
    Cadotte J E, Petersen R J, Larson R E and Erickson E E 1980 Desalination 32 25Google Scholar
  4. 4.
    Kazemimoghadam M and Mohammadi T 2007 Desalination 206 547Google Scholar
  5. 5.
    Li L, Dong J, Nenoff T M and Lee R 2004 J. Membr. Sci. 243 401Google Scholar
  6. 6.
    Swenson P, Tanchuk B, Bastida E, An W and Kuznicki S M 2012 Desalination 286 442Google Scholar
  7. 7.
    Zwijnenberg H J, Koops G H and Wessling M 2005 J. Membr. Sci. 250 235Google Scholar
  8. 8.
    Korin E, Ladizhensky I and Korngold E 1996 Chem. Eng. Process. 35 451Google Scholar
  9. 9.
    Korngold E, Korin E and Ladizhensky I 1996 Desalination 107 121Google Scholar
  10. 10.
    Xie Z, Ng D, Hoang M, Duong T and Gray S 2011 Desalination 273 220Google Scholar
  11. 11.
    Quiñones-Bolaños E, Zhou H, Soundararajan R and Otten L 2005 J. Membr. Sci. 252 19Google Scholar
  12. 12.
    Kuznetsov Y P, Kruchinina E V, Baklagina Y G, Khripunov A K and Tulupova O A 2007 Russ. J. Appl. Chem. 80 790Google Scholar
  13. 13.
    Khajavi S, Jansen J C and Kapteijn F 2010 J. Membr. Sci. 356 52Google Scholar
  14. 14.
    Wijaya S, Duke M C and Diniz da Costa J C 2009 Desalination 236 291Google Scholar
  15. 15.
    Rao A P, Joshi S V, Trivedi J J, Devmurari C V and Shah V J 2003 J. Membr. Sci. 211 13Google Scholar
  16. 16.
    Singh P S, Joshi S V, Trivedi J J, Devmurari C V, Rao A P and Ghosh P K 2006 J. Membr. Sci. 278 19Google Scholar
  17. 17.
    Reddy A V R, Ray P, Singh P S, Parshuram K, Maurya S and Trivedi J J 2012 PCT Patent WO 2012/035402 A1 Google Scholar
  18. 18.
    Avhale A 2010 Development of stainless-steel supported MFI and BEA type zeolite membranes, Ph.D. Thesis (Erlangen: Universität Erlangen-Nürnberg)Google Scholar
  19. 19.
    Kohlbrecher J and Wagner W 2000 J. Appl. Crystallogr. 33 804Google Scholar
  20. 20.
    Jadav G L, Aswal V K and Singh P S 2011 J. Membr. Sci. 378 194Google Scholar
  21. 21.
    Millero F J, Feistel R, Wright D G and McDougall T J 2008 Deep-Sea Res. Part I: Oceanogr. Res. Pap. 55 50Google Scholar
  22. 22.
    Guinier A and Fournet G 1955 Small angle scattering of X-rays (New York: Wiley)Google Scholar
  23. 23.
    Feigin L A and Svergun D I 1987 Structural analysis by small-angle X-ray and neutron scattering (Princeton, New Jersey: G.W. Taylor)Google Scholar
  24. 24.
    Grosso D, Babonneau F, Albouy P-A, Amenitsch H, Balkenende A R, Brunet-Bruneau A and Rivory J 2002 Chem. Mater. 14 931Google Scholar
  25. 25.
    Duke M C, da Costa J C D, Do D D, Gray P G and Lu G Q 2006 Adv. Funct. Mater. 16 1215Google Scholar
  26. 26.
    Hua Z-L, Shi J-L, Wang L and Zhang W-H 2001 J. Non-Cryst. Solids 292 177Google Scholar
  27. 27.
    Hoffmann F, Cornelius M, Morell J and Fröba M 2006 Angew. Chem. 45 3216Google Scholar
  28. 28.
    Du X and He J 2011 Langmuir 27 2972Google Scholar
  29. 29.
    Lu Y, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W, Guo Y, Soyez H, Dunn B, Huang M H and Zink J I 1997 Nature 389 364Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

    • 1
    • 2
    Email author
    • 1
    • 1
    • 2
    • 3
    • 3
    • 3
    • 4
  1. 1.CSIR—Central Salt & Marine Chemicals Research Institute, RO Membrane DisciplineGujaratIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR-CSMCRI)GujaratIndia
  3. 3.Institute of Chemical Reaction EngineeringUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Bhabha Atomic Research Centre, Solid State Physics DivisionMumbaiIndia

Personalised recommendations