Advertisement

Bulletin of Materials Science

, Volume 37, Issue 7, pp 1589–1595 | Cite as

Growth, optical, thermal and mechanical characterization of an organic crystal: Brucinium 5-sulfosalicylate trihydrate

  • K GAYATHRI
  • P KRISHNAN
  • P R RAJKUMAR
  • G ANBALAGANEmail author
Article

Abstract

Single crystals of Brucinium 5-sulfosalicylate trihydrate (B5ST) were grown from ethanol–water (1:1) mixed solvent by the slow solvent evaporation method. X-ray powder diffraction analysis reveals that the crystal belongs to orthorhombic system with space group P212121. The various reflections were indexed and the lattice parameters were calculated. Photoluminescence (PL) shows peaks corresponding to protonation of the amino group. The optical absorption spectrum shows that the crystal has 90% transmittance in the visible region with a lower cut-off wavelength of 312 nm. Thermal analysis performed on the grown crystal indicates the thermal stability of the crystal and various thermodynamical parameters were calculated from the thermogravimetry (TG) data. The mechanical properties like Vickers microhardness number (H v), stiffness constant (C 11) and yield strength (σ v) of the crystal were estimated by Vickers hardness test.

Keywords

Growth from solution X-ray diffraction organic compounds optical properties 

References

  1. Amit Mallik, Arunabha Basumajumdarn, Kundu P and Maiti P K 2013 Ceram. Int. 39 2551Google Scholar
  2. Ashok Kumar R, Ezhil Vizhi R, Vijayan N and Rajan Babu 2010 Der Pharma Chem. 2 247Google Scholar
  3. Augis J A and Bennett J E 1978 J. Therm. Anal. 13 283Google Scholar
  4. Caetano E W S, Pinheiro J R, Zimmer M, Frierie V N and Farias G A 2005 AIP Conf. Proc. 772 1095Google Scholar
  5. Carr C W, Radousky H B, Rubenchik A M, Feit M D and Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar
  6. Cheng K 2001 J. Mater. Sci. 36 1043Google Scholar
  7. Coats A W and Redfern J P 1997 Nature 201 183Google Scholar
  8. Dabhi R M and Joshi M J 2003 Indian J. Phys. A76 481Google Scholar
  9. Dhanuskodi S, Sabari Girisun T C, Bhagavannarayana G, Uma S and Philip J 2011 Mater. Chem. Phys. 126 463Google Scholar
  10. Gayathri K, Krishnan P, Sivakumar N, Sangeetha V and Anbalagan G 2013 J. Cryst. Growth 380 111Google Scholar
  11. Goldschmidt V M 1926 Naturwissenschaen 14 477Google Scholar
  12. Gulam Mohamed M, Rajarajan K, Mani G, Vimalan M, Prabha K, Madhavan J and Sahayaraj P 2007 J. Cryst. Growth 300 409Google Scholar
  13. Hanneman M 1941 Metall. Manch. 23 135Google Scholar
  14. Hanumantharao R and Kalainathan S 2013 Bull. Mater. Sci. 36 471Google Scholar
  15. Hayes C and Kendall E G 1973 Metallography 6 275Google Scholar
  16. Joshi V S and Joshi M J 2003 Cryst. Res. Technol. 38 817Google Scholar
  17. Krishnan P, Gayathri K, Bhagavannarayana G, Jayaramakrishnan V, Gunasekaran S and Anbalagan G 2013 Spectrochim. Acta A112 152Google Scholar
  18. Leon C, Lucia M L and Santamaria 1997 J. Phys. Rev. B55 882Google Scholar
  19. Li K, Wang X, Zhang F and Xue D 2008 Phys. Rev. Lett. 100 235504Google Scholar
  20. Li K, Wang X and Xue D 2012a Mater. Focus 1 142Google Scholar
  21. Li K, Yang P, Niu L and Xue D 2012b J. Phys. Chem. A116 6911Google Scholar
  22. Liu X J, Wang Z Y, Xu D, Wang X Q, Song Y Y, Yu W T and Guo W F 2007 J. Alloys Compd. 441 323Google Scholar
  23. Mallakpour S and Dinari M 2010 Chin. J. Polym. Sci. 28 685Google Scholar
  24. Marshall D B and Lawn B R 1986 Indentation of brittle materials, microindentation techniques in materials science and engineering, ASTM 889 26Google Scholar
  25. Mary Linet J, Mary Navis Priya S, Dinakaran S and Jerome Das S 2008 Cryst. Res. Technol. 43 806Google Scholar
  26. Matos Gomes E D, Venkataramanan V, Nogueira E, Belsley M, Proenca F, Criado A, Dianez M J, Estrada M D and Perez-Garrido S 2000 Synth. Met. 115 225Google Scholar
  27. Matusita K and Saka S 1980 J. Non-Cryst. Solids 39 741Google Scholar
  28. Mott B W 1956 Microindentation hardness testing (London: Butterworths Science Publications)Google Scholar
  29. Mythili P, Kanagasekaran T, Sharma Shailesh N and Gopalakrishnan R 2007 J. Cryst. Growth 306 344Google Scholar
  30. Nisha Santha Kumari P, Kalainathan S and Arunai Nambi Raj N 2008 Mater. Lett. 62 305Google Scholar
  31. Onitsch E M 1947 Mikroscopia 2 131Google Scholar
  32. Park Y J and Heo J 2002 Ceram. Int. 28 669Google Scholar
  33. Perez-Maqueda L A, Criado J M and Malek J 2003 J. Non-Cryst. Solids 320 84Google Scholar
  34. Pujol M C, Mateos X, Aznar A, Solans X, Surinach S, Massons J, Dıaza F and Aguilo M 2006 J. Appl. Crystallogr. 39 230Google Scholar
  35. Rao K K, Surrender V and Saritha Rani B 2002 Bull. Mater. Sci. 25 641Google Scholar
  36. Sangita R, Bajpai R and Bajpai A K 2005 Bull. Mater. Sci. 28 529Google Scholar
  37. Singh B K, Sharma R K and Garg B S 2006 J. Therm. Anal. Calorim. 84 593Google Scholar
  38. Smith G, Wermuth U and White J 2005a Acta Crystallogr. C61 o105Google Scholar
  39. Smith G, Wermuth U and White J M 2005b Acta Crystallogr. E61 o313Google Scholar
  40. Smith G, Wermuth U, Healy P and White J 2006 Aust. J. Chem. 59 320Google Scholar
  41. Subhadra K G, Kishan Rao K and Sirdeshmukh D B 2000 Bull. Mater. Sci. 23 147Google Scholar
  42. Unwin W C 1918 Proc. Inst. Mech. Eng. 95 405Google Scholar
  43. Verwey E J W and Heilman E L 1947 J. Chem. Phys. 15 174Google Scholar
  44. Westbrook J H 1958 Flow in rock salt structure (Report 58-R L, 2033 of GE Research Laboratory USA)Google Scholar
  45. Wooster W A 1953 Rep. Prog. Phys. 16 62Google Scholar
  46. Yakuphanoglu F, Gorgulu A O and Cukurovali A 2004 Physica B: Condens. Matter 353 223Google Scholar
  47. Zhu Ming-Liang and Xuan Fu-Zhen 2010 Mater. Sci. Eng. A527 4035Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • K GAYATHRI
    • 1
  • P KRISHNAN
    • 1
  • P R RAJKUMAR
    • 2
  • G ANBALAGAN
    • 1
    Email author
  1. 1.Department of PhysicsPresidency CollegeChennaiIndia
  2. 2.Department of ChemistryGovernment Arts CollegeChidambaramIndia

Personalised recommendations