Advertisement

Bulletin of Materials Science

, Volume 37, Issue 1, pp 141–150 | Cite as

Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts

  • W KICIŃSKI
  • M BYSTRZEJEWSKI
  • M H RÜMMELI
  • T GEMMING
Article

Abstract

Porous carbons with a well developed graphitic phase were obtained via the pyrolysis of FeCl3-, NiCl2-, and CoCl2-doped organic xerogels. Doping was realized through salt solubilization in a water/methanol solution of resorcinol and furfural. Carbon xerogels with tailored particles, porous morphology and various degrees of graphitization were obtained depending of the water/methanol ratio and the salt content and type in the starting solution of substrates. When obtained via pyrolysis, carbon xerogels retain the overall open-celled structure exhibiting depleted microporosity and a well-developed mesoporic region that expands into macropores. The removal of metal leads to carbon xerogels with specific surface areas between 170 and 585 m2/g and pore volume up to 0·76 cm3/g. The possibility of enhancing the porosity of xerogels via templating with colloidal silica was also investigated. It was assumed that from the three investigated salts, FeCl3 makes the best choice for graphitization catalyst precursor to obtain uniformly graphitized mesoporous carbon xerogels. The obtained carbon samples were characterized by means of SEM, TEM, X-ray diffraction, Raman spectroscopy, N2 physisorption and thermogravimetric analysis.

Keywords

Organic xerogel carbon xerogel graphitization mesoporosity sol–gel synthesis. 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Education through the Department of Chemistry, Warsaw University under Grant IP2011006071.

Supplementary material

12034_2014_612_MOESM1_ESM.doc (12.6 mb)
(DOC 12.5 MB)

References

  1. Chuenchom L, Kraehnert R and Smarsly B M 2012 Soft Matter 8 10801CrossRefGoogle Scholar
  2. Fu R, Baumann T F, Cronin S, Dresselhaus G, Dresselhaus MS and Satcher J H Jr 2005 Langmuir 21 2647CrossRefGoogle Scholar
  3. Fuertes A B and Alvarez S 2004 Carbon 42 3049CrossRefGoogle Scholar
  4. Gao W,Wan Y, Dou Y and Zhao D 2011 Adv. Energy Mater. 1 115CrossRefGoogle Scholar
  5. Han S, Yun Y, Park K-W, Sung Y-E and Hyeon T 2003 Adv. Mater. 15 1922CrossRefGoogle Scholar
  6. Hasegawa G, Kanamori K and Nakanishi K 2012 Mater. Lett. 76 1CrossRefGoogle Scholar
  7. Hyeon T, Han S, Sung Y-E, Park K-W and Kim Y-W 2003 Angew. Chem. Int. Ed. 42 4352CrossRefGoogle Scholar
  8. Jin H, Zhanga H,Ma Y, Xu T, Zhong H and Wang M 2010 J. Power Sources 195 6323CrossRefGoogle Scholar
  9. Job N, Sabatier F, Pirard J P, Crine M and Leonard A 2006 Carbon 44 2534CrossRefGoogle Scholar
  10. Kiciński W, Szala M and Nita M 2011 J. Sol–Gel Sci. Technol. 58 102CrossRefGoogle Scholar
  11. Kruk M, Kohlhaas K M, Dufour B, Celer E B, Jaroniec M, Matyjaszewski K, Ruoff R S and Kowalewski T 2007 Micropor. Mesopor. Mater. 102 178CrossRefGoogle Scholar
  12. Lee T K, Ji X, Rault M and Nazar L F 2009 Angew. Chem. Int. Ed. 48 5661CrossRefGoogle Scholar
  13. Liang C, Xie H, Schwartz V, Howe J, Dai S and Overbury S H 2009 J. Am. Chem. Soc. 131 7735CrossRefGoogle Scholar
  14. Long J W, Laskoski M, Keller T M, Pettigrew K A, Zimmerman T N, Qadri S B and Peterson G W 2010 Carbon 48 501CrossRefGoogle Scholar
  15. Liu S, Zhang H, Xu Z, Zhong H and Jin H 2012a Int. J. Hydrogen Energy 37 19065CrossRefGoogle Scholar
  16. Liu Z, Li J, Yang Y, Mi J H and Tan X L 2012b Mater. Res. Innovations 16(5) 362CrossRefGoogle Scholar
  17. Lu A-H, Li W-C, Salabas E-L, Spliethoff B and Schüth F 2006 Chem. Mater. 18 2086CrossRefGoogle Scholar
  18. Lu X, Xiao Y, Lei Z, Chen J, Zhang H, Ni Y and Zhang Q 2009 J. Mater. Chem. 19 4707CrossRefGoogle Scholar
  19. Lu X, Shen J, Ma H, Yan B, Li Z, Shi M and Ye M 2012 J. Power Sources 201 340CrossRefGoogle Scholar
  20. Moreno-Castilla C, Maldonado-Hódar F J and Pérez-Cadenas A F 2003 Langmuir 19 5650CrossRefGoogle Scholar
  21. Oya A and Marsh H 1982 J. Mater. Sci. 17 309CrossRefGoogle Scholar
  22. Qi J, Jiang L, Tang Q, Zhu S,Wang S, Yi B and Sun G 2012 Carbon 50 2824CrossRefGoogle Scholar
  23. Rolison D R 2003 Science 299 1698CrossRefGoogle Scholar
  24. Rouquerol F, Rouquerol J and Sing K 1999 Adsorption by powders and porous solids. Principles, methodology and applications (San Diego, CA: Academic Press)Google Scholar
  25. Sevilla M and Fuertes A B 2009 Mater. Chem. Phys. 113 208CrossRefGoogle Scholar
  26. Sevilla M, Sanchís C, Valdés-Solís T, Morallón E and Fuertes A B 2007 J. Phys. Chem. C 111 9749CrossRefGoogle Scholar
  27. Sevilla M, Salinas Martínez-de Lecea C, Valdés-Solís T, Morallón E and Fuertes A B 2008a Phys. Chem. Chem. Phys. 10 1433CrossRefGoogle Scholar
  28. Sevilla M, Sanchís C, Valdés-Solís T, Morallón E and Fuertes A B 2008b Carbon 46 931CrossRefGoogle Scholar
  29. Shanahan P V, Xu L, Liang C, Waje M, Dai S and Yan Y S 2008 J. Power Sources 185 423CrossRefGoogle Scholar
  30. Sheng Z M and Wang J N 2008 Adv. Mater. 20 1071CrossRefGoogle Scholar
  31. Su F, Zeng J, Bao X, Yu Y, Lee J Y and Zhao X S 2005a Chem. Mater. 17 3960CrossRefGoogle Scholar
  32. Su F, Zhao X S, Wang Y, Zeng J, Zhou Z and Yang Lee J 2005b J. Phys. Chem. B 109 20200CrossRefGoogle Scholar
  33. Teng S J,Wang X X, Xia B Y and Wang J N 2010 J. Power Sources 195 1065CrossRefGoogle Scholar
  34. Wang J N, Zhao Y Z and Niu J J 2007 J. Mater. Chem. 17 2251CrossRefGoogle Scholar
  35. Wang D-W, Li F, Liu M, Lu G Q and Cheng H-M 2008 Angew. Chem. 120 379CrossRefGoogle Scholar
  36. Wang Z, Zhang X, Liu X, Lv M, Yang K and Meng J 2011 Carbon 49 161CrossRefGoogle Scholar
  37. Xia B Y, Wang J N, Wang X X, Niu J J, Sheng Z M, Hu M R and Yu Q C 2008 Adv. Funct. Mater. 18 1790CrossRefGoogle Scholar
  38. Yoon S B, Chai G S, Kang S K, Yu J-S, Gierszal K P and Jaroniec M 2005 J. Am. Chem. Soc. 127 4188CrossRefGoogle Scholar
  39. Yuan J, Giordano C and Antonietti M 2010 Chem. Mater. 22 5003 Google Scholar
  40. Zhai D, Du H, Li B, Zhu Y and Kang F 2011 Carbon 49 725CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • W KICIŃSKI
    • 1
  • M BYSTRZEJEWSKI
    • 2
  • M H RÜMMELI
    • 3
    • 4
  • T GEMMING
    • 5
  1. 1.Institute of ChemistryMilitary University of TechnologyWarsawPoland
  2. 2.Department of ChemistryWarsaw UniversityWarsawPoland
  3. 3.IBS Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)DaejonRepublic of Korea
  4. 4.Department of Energy Science, Department of PhysicsSungkyunkwan UniversitySuwonRepublic of Korea
  5. 5.IFW DresdenDresdenGermany

Personalised recommendations