Advertisement

Bulletin of Materials Science

, Volume 37, Issue 5, pp 1153–1157 | Cite as

Microstructural evolution and mechanical properties of hypereutectic Al-Si alloy processed by liquid die forging

  • F. F. WuEmail author
  • S. T. Li
  • G. A. Zhang
  • F. Jiang
Article

Abstract

The microstructural evolution and mechanical properties of a hypereutectic Al-Si alloy processed by liquid die forging were investigated. It is found that the grain size of the primary Si was significantly reduced by liquid die forging with increased pressure. The volume fraction of eutectic silicon was decreased with increased pressure. By liquid die forging with pressure up to 180 MPa, the average size of the primary Si was reduced to about 18 μm, which results in the remarkable increase in the fracture strength and hardness of the hypereutectic Al-Si alloy.

Keywords

Mechanical properties hypereutectic Al-Si alloy liquid die forging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begg J 1992 Process optimization in the squeeze casting of zinc-aluminum alloys and composites (UK: Loughborough University of Technology)Google Scholar
  2. Brazhkina V V, Popov S V, Voloshina R N, Stanev L M and Spirov I G 1991 High Press. Res. 6 333CrossRefGoogle Scholar
  3. Chang J Y, Moon I and Choi C S 1998 J. Mater. Sci. 33 5015CrossRefGoogle Scholar
  4. Chen Z W, Jie W Q and Zhang R J 2005 Mater. Lett. 599 2183Google Scholar
  5. Choi H S, Konishi H and Li X C 2012 Mater. Sci. Eng. A541 159CrossRefGoogle Scholar
  6. Choi H S and Li X C 2012 J. Mater. Sci. 47 3096CrossRefGoogle Scholar
  7. Dahle A K, Nogita K, McDonald S D, Dinnis C and Lu L 2005 Mater. Sci. Eng. A413–414 243CrossRefGoogle Scholar
  8. Hekmat-Ardakan A and Ajersch F 2010 Acta Mater. 58 3422CrossRefGoogle Scholar
  9. Hekmat-Ardakan A, Liu X C, Ajersch F and Chen X G 2010 Wear 269 684CrossRefGoogle Scholar
  10. Hong S Z and Zeng Z P 2002 Spec. Cast. Nonferr. Alloys 22 26Google Scholar
  11. Jung H K, Seo P K and Kang C G 2001 J. Mater. Process. Technol. 113 568CrossRefGoogle Scholar
  12. Kilicaslana M F, Lee W R, Lee T H, Sohn Y H and Hong S J 2012 Mater. Lett. 71 164CrossRefGoogle Scholar
  13. Li B, Wang H W, Jie J C and Wei Z J 2011a Mater. Des. 32 1617CrossRefGoogle Scholar
  14. Li B, Wang H W, Jie J C and Wei Z J 2011b J. Alloys Compd. 509 3387CrossRefGoogle Scholar
  15. Li L X, Zong H T, Li M, Wang H X and Cai H X 2012 High Temp.-High Pres. 41 69Google Scholar
  16. Liu G, Li G D, Cai A H and Chen Z K 2011 Mater. Des. 32 121CrossRefGoogle Scholar
  17. Lu D H, Jiang Y H, Guan G S, Zhou R F, Li Z H and Zhou R 2007 J. Mater. Process. Technol. 189 13CrossRefGoogle Scholar
  18. Lu L, Nogita K and Dahle A K 2005 Mater. Sci. Eng. A399 244CrossRefGoogle Scholar
  19. Mayers M A and Chawla K K 1999 Mechanical behaviour of materials (Upper Saddle River, New Jersey: Prentice Hall)Google Scholar
  20. McDonald S D, Nogita K and Dahle A K 2004 Acta Mater. 52 4273CrossRefGoogle Scholar
  21. Mohamed A M A, Samuel A M, Samuel F H and Doty H W 2009 Mater. Des. 30 3943CrossRefGoogle Scholar
  22. Murali S and Yong M S 2010 J. Mater. Process. Technol. 210 1276CrossRefGoogle Scholar
  23. Nogita K, Yasuda H, Yoshida M, McDonald S D, Uesugi K, Takeuchi A and Suzuki Y 2010 J. Alloys Compd. 489 415CrossRefGoogle Scholar
  24. Prukkanona W, Srisukhumbowornchai N and Limmaneevichitr C 2009 J. Alloys Compd. 477 454CrossRefGoogle Scholar
  25. Sha M, Wu S S, Wang X T, Wan L and Ping A 2012 Mater. Sci. Eng. A535 258CrossRefGoogle Scholar
  26. Song K K, Bian X F, Guo J, Wang S H, Sun B A, Li X L and Wang C D 2007 J. Alloys Compd. 440 L8CrossRefGoogle Scholar
  27. Srirangam P, Kramer M J and Shankar S 2011 Acta Mater. 59 503CrossRefGoogle Scholar
  28. Tsai Y C, Chou C Y, Lee S L, Lin C K, Lin J C and Lim S W 2009 J. Alloys Compd. 487 157CrossRefGoogle Scholar
  29. Uzun O, Karaaslan T, Gogebakan M and Keskin M 2004 J. Alloys Compd. 376 149CrossRefGoogle Scholar
  30. Voncina M, Kores S, Mrvar P and Medved J 2011 J. Alloys Compd. 509 7349CrossRefGoogle Scholar
  31. Wang E D, Hui X D, Wang S S, Zhao Y F and Chen G L 2011 Mater. Sci. Eng. A528 5764CrossRefGoogle Scholar
  32. Wang Y P, Wang S J, Li H and Liu X F 2009 J. Alloys Compd. 477 139CrossRefGoogle Scholar
  33. Wu H and Chin B A 1991 J. Mater. Sci. 26 993Google Scholar
  34. Xing P F, Gao B, Zhuang Y X, Liu K H and Tu G F 2010a J. Rare Earths 28 927CrossRefGoogle Scholar
  35. Xing P F, Gao B, Zhuang Y X, Liu K H and Tu G F 2010b Acta Metall. Sin. 23 327Google Scholar
  36. Xu C L, Wang H Y, Yang Y F and Jiang Q C 2007 Mater. Sci. Eng. A452–453 341CrossRefGoogle Scholar
  37. Yi H K and Zhang D 2003 Mater. Lett. 57 2523CrossRefGoogle Scholar
  38. Yu X F, Zhang G Z, Wang X Y, Gao Y Y, Jia G L and Hao Z Y 1999 J. Mater. Sci. 34 4149CrossRefGoogle Scholar
  39. Yu X F, Zhang G Z, Xiao H J, Pan A S, Jia G L, Gao Y Y, Hao Z Y and Guo X B 2000 Chin. J. Mater. Res. 14 141Google Scholar
  40. Zhang H H, Duan H L, Shao G J, Xu L P, Yin J L and Yan B 2006 Rare Metals 25 11CrossRefGoogle Scholar
  41. Zhou J and Duszczyk J 1990 J. Mater. Sci. 25 4541CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaoning University of TechnologyJinzhouChina

Personalised recommendations