Bulletin of Materials Science

, Volume 37, Issue 5, pp 983–989 | Cite as

Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

  • Sushil Kumar Pandey
  • Saurabh Kumar Pandey
  • Vishnu Awasthi
  • Ashish Kumar
  • Uday P. Deshpande
  • Mukul Gupta
  • Shaibal Mukherjee
Article

Abstract

We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on p-type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ~ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

Keywords

DIBSD in situ annealing PL XRD XPS ZnO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghamalyan N R et al 2003 Semicond. Sci. Technol. 18 525CrossRefGoogle Scholar
  2. Cullity B D 1979 Elements of X-ray diffraction (Reading, MA: Addison-Wesley) 2nd ednGoogle Scholar
  3. Fan H B, Yang S Y, Zhang P F, Wei H Y, Liu X L, Jiao C M, Zhu Q S, Chen Y H and Wang Z G 2007 Chin. Phys. Lett. 24 2108CrossRefGoogle Scholar
  4. Islam M N, Ghosh T B, Chopra K L and Acharya H N 1996 Thin Solid Films 280 20CrossRefGoogle Scholar
  5. Kang Hong Seong, Kang Jeong Seok, Kim Jae Won and Lee Sang Yeo 2004 J. Appl. Phys. 95 3CrossRefGoogle Scholar
  6. Kim Y J, Kim Y T, Yang H K, Park J C, Han 1 I, Lee Y E and Kim H J 1997 Vac. Sci. Technol. A15 1103CrossRefGoogle Scholar
  7. Kroger F A and Vink H J 1954 J. Chem. Phys. 22 250CrossRefGoogle Scholar
  8. Kumar Rajesh, Khare Neeraj, Kumar Vijay and Bhalla G L 2008 Appl. Surf. Sci. 254 6509CrossRefGoogle Scholar
  9. Leiter F H, Alves H R, Hofstaetter A, Hofmann D M and Meyer B K 2001 Phys. Status Solidi BR4 226Google Scholar
  10. Look D C 2001 Mater. Sci. Eng. B80 383CrossRefGoogle Scholar
  11. Look D C, Renlund G M, Burgeber R H and Sizelove J R 2004 Appl. Phys. Lett. 85 5269CrossRefGoogle Scholar
  12. Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G and Harsch W C 1998 Solid State Commun. 105 39CrossRefGoogle Scholar
  13. Makino T, Segawa Y, Tsukazaki A, Ohtomo A and Kawasaki M 2005 Appl. Phys. Lett. 87 022101CrossRefGoogle Scholar
  14. Pandey Sushil Kumar, Pandey Saurabh Kumar, Mukherjee C, Mishra P, Gupta M, Barman S R, D’Souza S W and Mukherjee Shaibal 2013 J. Mater. Sci.: Mater. Electron. 24 2541Google Scholar
  15. Pearton S J, Abernathy C R, Overberg M E, Thaler G T and Norton D P 2003 J. Appl. Phys. 93 1CrossRefGoogle Scholar
  16. Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2005 Prog. Mater. Sci. 50 293CrossRefGoogle Scholar
  17. Puchert M K, Timbrell P Y and Lamb R N 1996 J. Vac. Sci. Technol. A14 4Google Scholar
  18. Rao T P, Kumar M C S, Safarulla A, Ganesan V, Barman S R and Sanjeeviraja C 2010 Physica B405 2226Google Scholar
  19. Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 873CrossRefGoogle Scholar
  20. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287CrossRefGoogle Scholar
  21. Vanheusden K, Seager C H, Warren W L, Trallant D R, Caruso J, Hampden-Smith M J and Kodas T T 1997 J. Lumin. 75 11CrossRefGoogle Scholar
  22. Vanheusden K, Warren W L, Seager C H, Trallant D R and Voigt J A 1996 J. Appl. Phys. 79 7983CrossRefGoogle Scholar
  23. Van de Walle C G 2000 Phys. Rev. Lett. 85 1012CrossRefGoogle Scholar
  24. Yu Chang-Feng, Sung Che-Wei, Chen Sy-Hann and Sun Shih-Jye 2009 Appl. Surf. Sci. 256 792CrossRefGoogle Scholar
  25. Zhang J P, Zhang L D, Zhu L Q, Zhang Y, Liu M and Wang X J 2007 J. Appl. Phys. 102 114903CrossRefGoogle Scholar
  26. Zhao Jun-Liang, Li Xiao-Min, Bian Ji-Ming, Yu Wei-Dong and Gao Xiang-Dong 2005 J. Cryst. Growth 50 276Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • Sushil Kumar Pandey
    • 1
  • Saurabh Kumar Pandey
    • 1
  • Vishnu Awasthi
    • 1
  • Ashish Kumar
    • 1
  • Uday P. Deshpande
    • 2
  • Mukul Gupta
    • 2
  • Shaibal Mukherjee
    • 1
  1. 1.Discipline of Electrical Engineering, Hybrid Nanodevice Research GroupIndian Institute of TechnologyIndoreIndia
  2. 2.Department of Atomic Energy (UGC DAE), Consortium for Scientific ResearchUniversity Grants CommissionIndoreIndia

Personalised recommendations