Bulletin of Materials Science

, Volume 36, Issue 6, pp 1019–1036 | Cite as

High temperature impedance spectroscopy of barium stannate, BaSnO3

Article

Abstract

Polycrystalline powder of BaSnO3 was prepared at 1300 °C using a high-temperature solid-state reaction technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: a = (4·1158 ± 0·0003) Å. The synthesized powder was characterized using X-ray diffraction (XRD) scanning electron micrographs, energy dispersive X-ray analysis, differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show that total impedance is due to the contributions of grains, grain boundaries and electrode. Resistance of these contributions has been determined. Variation of these resistances with temperature shows the presence of two different regions with different slopes. The nature of variation for the above three resistances, in both the temperature regions confirms that conducting species (phases) responsible for grain, grain boundaries and electrode are the same. Based on the value of activation energy, it is proposed that conduction via hopping of doubly ionized oxygen vacancies (V \(_{\rm{o}}^{\bullet\bullet})\) is taking place in the temperature region of 300–450 °C, whereas in the temperature region of 450–650 °C, hopping of proton, i.e. OH ∙  ions occurs.

Keywords

Ceramics oxides infrared spectroscopy electrical properties electrical conductivity 

Notes

Acknowledgements

The author is grateful to the Head, Department of Physics, R. T. M. Nagpur University, Nagpur, for providing facilities to carry out electrical measurements.

References

  1. Animitsa I, Dogodaeva E, Trasova N, Korsareva O and Neiman A 2011 Solid State Ionics 185 1CrossRefGoogle Scholar
  2. Azad A M and Hon N C 1998 J. Alloys Compd. 270 95CrossRefGoogle Scholar
  3. Bevillon E, Geneste G, Chesnaud A, Wang J and Dezanneau G 2008 Ionics 14 1293CrossRefGoogle Scholar
  4. Borse P H, Joshi U A, Ji S M, Jang J S, Lee J S, Jeong F D and Kim H G 2007 Appl. Phys. Lett. 90 034103CrossRefGoogle Scholar
  5. Burn I and Neirman S 1984 J. Mater. Sci. 19 737CrossRefGoogle Scholar
  6. Cava J, Gammel P, Batlog B, Krajewski J J, Peck Jr W F, Rupp Jr W L, Felder R and Van Dover R B 1990 Phys. Rev. B42 4815CrossRefGoogle Scholar
  7. Cerda J, Arbiol J, Dezunneau G, Diaz R and Morante J R 2002 Sensor Actuat. B84 21CrossRefGoogle Scholar
  8. Deepa A S, Vidya S, Manu P C, Solomon S, John A and Thomas J K 2011 J. Alloys Compd. 509 1830CrossRefGoogle Scholar
  9. Doroflet C, Popa P D and Lacombi F 2012 Sensor Actuat A173 24Google Scholar
  10. Gopal Reddy V, Manorama S V and Rao V J 2001 J. Mat. Sci.: Mater. Elect. 12 137Google Scholar
  11. Haile S M, West D L and Cambell J 1998 J. Mater. Res. 13 1576CrossRefGoogle Scholar
  12. Kocemba I, Jodrzejewska M W, Szychowska A, Rynkowski J and Glowka M 2007 Sensor Actuat. B121 401CrossRefGoogle Scholar
  13. Kreuer K D 1999 Solid State Ionics 125 285CrossRefGoogle Scholar
  14. Kreuer K D 2003 Ann. Rev. Mater. Res. 33 333CrossRefGoogle Scholar
  15. Kumar A and Choudhary R N P 2007 J. Mat. Sci. 42 2476CrossRefGoogle Scholar
  16. Kumar A, Singh B P, Choudhary R N P and Thakur A K 2005a Mater. Lett. 59 1880CrossRefGoogle Scholar
  17. Kumar A, Singh B P, Choudhary R N P and Thakur A K 2005b J. Alloys Compd. 394 292CrossRefGoogle Scholar
  18. Kumar A, Singh B P, Choudhary R N P and Kumar A K 2006a Mat. Chem. Phys. 99 150CrossRefGoogle Scholar
  19. Kumar A, Choudhary R N P, Singh B P and Thakur A K 2006b Ceram. Int. 32 73CrossRefGoogle Scholar
  20. Kumar A, Choudhary R N P and Singh B P 2007 J. Mater. Sci. 42 8506Google Scholar
  21. Kutty T R N and Vivekanandan R 1987 Mater. Res. Bull. 22 1457CrossRefGoogle Scholar
  22. Larramona G, Gutierrez C, Nunes M R and da Costa F M A 1989 J. Chem. Soc. Faraday Trans. 85 907CrossRefGoogle Scholar
  23. Lu W and Schmidt H 2007 J. Sol–Gel Tech. 42 55CrossRefGoogle Scholar
  24. Lu W and Schmidt H 2008 Ceram. Int. 34 645CrossRefGoogle Scholar
  25. Lu W, Jiang S, Zhou D and Gong S 2000 Sensor Actuat. 80 35CrossRefGoogle Scholar
  26. Macdonald J R (ed.) 1987 Impedance spectroscopy, emphasizing solid materials and systems (Singapore: Wiley) Ch. 4Google Scholar
  27. MacDonald J R and Johnson W B 1987 Impedance spectroscopy emphasizing solid materials and systems (ed.) J R MacDonald (New York: Wiley & Sons) p. 1Google Scholar
  28. Murugaraj P, Krurer K D, He T, Schober T and Maier J 1997 Solid State Ionics 98 1CrossRefGoogle Scholar
  29. Ostrick B, Fleischer M, Lampe U and Meixner H 1997 Sensor Actuat. B44 60Google Scholar
  30. Park H J, Kwank C, Lee K H, Lee S M and Lee E S 2009 J. Eur. Ceram. Soc. 29 2429CrossRefGoogle Scholar
  31. Pfaff G, Hildenbrand V D and Fuess H 1998 J. Mater. Sci. Lett. 17 1983CrossRefGoogle Scholar
  32. Prokopale O I 1976 Ferroelectrics 14 683CrossRefGoogle Scholar
  33. Raevski I P, Prokopalo O I and Kolesnikove S G 1983 Rostov-on-Don 53 1175Google Scholar
  34. Ramdas B and Vijayraghavan R 2010 Bull. Mater. Sci. 33 75CrossRefGoogle Scholar
  35. Roberto K, Abicht H P, Wultersdorf J and Pippel E 2006 Therm. Chem. Acta 44 176Google Scholar
  36. Schober T 1998 Solid State Ionics 109 1CrossRefGoogle Scholar
  37. Shimizu Y, Narikiyo T, Arai H and Seiyama T 1985 Chem. Lett. 14 377CrossRefGoogle Scholar
  38. Smit M G, Goodenough J B, Manthiram A, Taylor R D, Peng W and Kimbal C W 1992 J. Solid State Chem. 98 181CrossRefGoogle Scholar
  39. Smith A J and Welch A J E 1960 Acta Crystallogr. 13 653CrossRefGoogle Scholar
  40. Smolensi G A, Iagranovskaya A, Kalinin A M and Fedotova T M 1955 Z. K. Tekh. Fiz. 25 2134Google Scholar
  41. Song Y J and Kim S 2001 Ind. Engg. Chem. 7 183Google Scholar
  42. Tao S, Gao F, Liu X and Sarensen O T 2000 Sensor Actuat. B71 223CrossRefGoogle Scholar
  43. Upadhyay S, Parkash O and Kumar D 1997 J. Mater. Sci. Lett. 16 1330CrossRefGoogle Scholar
  44. Upadhyay S and Kavita P 2007 Mater. Lett. 61 1912CrossRefGoogle Scholar
  45. Vivekanandan R and Kutty T R N 1990 Mater. Sci. Engg. B6 221CrossRefGoogle Scholar
  46. Wang T, Chen X M and Zheng X H 2003 J. Electroceram. 11 173CrossRefGoogle Scholar
  47. Wang S, Yang Z, Zhou G, Lu M, Zhou Y and Zhang H 2007 J. Mater. Sci. 42 6819CrossRefGoogle Scholar
  48. Wang Y, Chesnaud A, Bevillon E, Yang J and Dezanneau G 2011 Mat. Sci. Engg. B176 1178Google Scholar
  49. Yuan Y, Lu J, Jiang X, Li Z, Yu T, Zou Z and Ye J 2007 Appl. Phys. Lett. 91 094107CrossRefGoogle Scholar
  50. Zhang Y, Zhang H, Wang Y and Zhang W F 2008 J. Phys. Chem. C112 8553Google Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of Physics, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations