Advertisement

Bulletin of Materials Science

, Volume 35, Issue 5, pp 795–800 | Cite as

Straightforward synthesis of hyperbranched polymer/graphene nanocomposites from graphite oxide via in situ grafting from approach

  • QIUHONG XU
  • YIWEN GONG
  • YUAN FANG
  • GUOHUA JIANGEmail author
  • YIN WANG
  • XINKE SUN
  • RIJING WANG
Article

Abstract

The grafting of graphite oxide (GO) with cyclic ether monomers, directly affords grafting with hyperbranched polymers. The resulting nanocomposites show good solubility in the solvents of polymers, exfoliation of graphene in the polymer matrix and excellent mechanical properties and robustness under bending.

Keywords

Nanostructures composite materials atomic force microscopy (AFM) electron microscopy  mechanical properties 

Notes

Acknowledgements

This work was financially supported by the Qianjiang Talents Project of Zhejiang Province (2010R10023), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry (1001603-C), the Natural Science Foundation of Zhejiang Province (Y4100045), the Key Bidding Project of Zhejiang Provincal Key Lab of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University (S2010002) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT: 0654).

Supplementary material

12034_2012_378_MOESM1_ESM.pdf (623 kb)
(PDF 623 KB)

References

  1. Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132CrossRefGoogle Scholar
  2. An X, Butler T W, Washington M, Nayak S K and Kar S 2011 ACS Nano 5 1003CrossRefGoogle Scholar
  3. Chen Y, Zhang X, Zhang D, Yu P and Ma Y 2011 Carbon 49 573CrossRefGoogle Scholar
  4. Cravotto G and Cintas P 2010 Chem. Eur. J. 16 5246Google Scholar
  5. Deng Y, Li Y, Dai J, Lang M and Huang X 2011 J. Polym. Sci, Part A, Polym. Chem. 49 1582CrossRefGoogle Scholar
  6. Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W and Wei F 2010 Adv. Mater. 22 3723CrossRefGoogle Scholar
  7. Geim A K 2009 Science 324 1530CrossRefGoogle Scholar
  8. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183CrossRefGoogle Scholar
  9. Hummers W and Offerman R 1958 J. Am. Chem. Soc. 80 1339CrossRefGoogle Scholar
  10. Jiang G,Wang L, Chen T, Yu H,Wang C and Chen C 2005 Polymer 46 5351CrossRefGoogle Scholar
  11. Jiang G, Wang L and Chen W 2006 Eur. Polym. J. 42 3333CrossRefGoogle Scholar
  12. Lee C G, Wei X D, Kysar J W and Hone J 2008 Science 321 385CrossRefGoogle Scholar
  13. Lee D Y, Khatun Z, Lee J H, Lee Y K and In I 2011 Biomacromolecules 12 336CrossRefGoogle Scholar
  14. Li D and Kaner R B 2008 Science 320 1170CrossRefGoogle Scholar
  15. Liang M H and Zhi L J 2009 J. Mater. Chem. 19 5871CrossRefGoogle Scholar
  16. Liu J, Yang W, Tao L, Li D, Boyer C and Davis T P 2010a J. Polym. Sci, Part A, Polym. Chem. 48 425CrossRefGoogle Scholar
  17. Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F and Davis T P 2010b Langmuir 26 10068CrossRefGoogle Scholar
  18. Loh K P, Bao Q, Ang P K and Yang J 2010 J. Mater. Chem. 20 2277CrossRefGoogle Scholar
  19. Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217CrossRefGoogle Scholar
  20. Park S, Mohanty N, Suk J W, Nagaraja A, An J, Piner R D, Cai W W, Dreyer D R, Berry V and Ruoff R S 2010 Adv. Mater. 22 1736CrossRefGoogle Scholar
  21. Pham T A, Kumar N A and Jeong Y T 2010 Syn. Mater. 160 2028CrossRefGoogle Scholar
  22. Pramoda K P, Hussain H, Koh H M, Tan H R and He C B 2010 J. Polym. Sci, Part A, Polym. Chem. 48 4262CrossRefGoogle Scholar
  23. Ren P-G, Yan D-X, Chen T, Zeng B-Q and Li Z-M 2011 J. Appl. Polym. Sci. 121 3167CrossRefGoogle Scholar
  24. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhamma A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558CrossRefGoogle Scholar
  25. Stine R, Robinson J T, Sheehan P E and Tamanaha C R 2010 Adv. Mater. 22 5297CrossRefGoogle Scholar
  26. Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803CrossRefGoogle Scholar
  27. Vuluga D, Thomassin J M, Molenberg I, Huynen I, Gilbert B, Jérôme C, Alexandre M and Detrembleur C 2011 Chem. Commun. 47 2544CrossRefGoogle Scholar
  28. Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, Liu F, Zhang M, Shang X and Wang X 2011a J. Nanopart. Res. 13 869CrossRefGoogle Scholar
  29. Wang Y, Shi Z, Fang J, Xu H and Yin J 2011b Carbon 49 1199CrossRefGoogle Scholar
  30. Xu Z and Gao C 2010 Macromolecules 43 6716CrossRefGoogle Scholar
  31. Zhang H, Bao Q L, Tang D Y, Zhao L M and Loh K P 2009 Appl. Phys. Lett. 95 141103CrossRefGoogle Scholar
  32. Zhao X, Zhang Q H, Chen D J and Lu P 2010 Macromolecules 43 2357CrossRefGoogle Scholar
  33. Zhu Q, Wu J, Tu C, Shi Y, He L, Wang R, Zhu X and Yan D 2009 J. Phys. Chem. B113 5777Google Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  • QIUHONG XU
    • 1
  • YIWEN GONG
    • 1
  • YUAN FANG
    • 2
  • GUOHUA JIANG
    • 1
    Email author
  • YIN WANG
    • 1
    • 3
  • XINKE SUN
    • 1
    • 3
  • RIJING WANG
    • 1
    • 3
  1. 1.Department of Materials Engineering, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouP. R. China
  2. 2.Department of Textile Engineering, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouP. R. China
  3. 3.Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of EducationZhejiang Sci-Tech UniversityHangzhouP. R. China

Personalised recommendations