Effect of annealing time on structural and magnetic properties of laser ablated oriented Fe3O4 thin films deposited on Si(100)
- 187 Downloads
- 1 Citations
Abstract
We have fabricated ∼143 nm Fe3O4 thin films on Si(100) substrates at 450°C and then annealed them at the same temperature for 30, 60 and 90 min under a vacuum of 10 − 6 torr with pulsed laser deposition. We studied the effects on the structural and magnetic properties of Fe3O4 thin films. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). XRD studies showed pure single phase spinel cubic structure of Fe3O4 with a preferential [111] orientation, independent of substrate orientation at 90 min annealing. Higher magnetization was obtained up to 60 min annealing due to Fe phase but at 90 min, we obtained reduced magnetization of 335 emu/cc. This is attributed to the formation of antiphase boundaries between substrate and film.
Keywords
Iron oxide Fe3O4 thin film pulse laser deposition annealing saturation magnetizationReferences
- Brabers V A M 1995 Handbook of magnetic materials (ed) K H J Buschow (Amsterdam: Elsevier Science) Vol. 8 Google Scholar
- Coey J M D and Venkatesan M 2002 J. Appl. Phys. 91 8345CrossRefGoogle Scholar
- Dediu V, Arisi E, Bergenti I, Riminucci A, Solzi M, Pernechele C and Natali M 2007 J. Magn. Magn. Mater. 316 e721CrossRefGoogle Scholar
- Dong C 1999 J. Appl. Cryst. 32 838CrossRefGoogle Scholar
- Fabian Z J and Das Sarma S 2004 Rev. Mod. Phys. 76 323CrossRefGoogle Scholar
- Ferhat M and Yoh K 2007 Appl. Phys. Lett. 90 112501CrossRefGoogle Scholar
- Gong G Z, Gupta A, Xiao G, Qian W and Draivid V P 1997 Phys. Rev. B56 5096Google Scholar
- Liu H, Jiang E Y, Bai H L, Zheng R K, Wei H L and Zhang X X 2003 Appl. Phys. Lett. 83 3531CrossRefGoogle Scholar
- Lochner E, Shaw K A, DiBari R C, Portwine W, Stoyanov P, Berry S D and Lind D M 1994 IEEE Trans. Magn. 30 Google Scholar
- Magulies D T, Parker F T, Spada F E, Goldman R S, Li J, Sinclair R and Berkowitz A E 1996 Phys. Rev. B53 9175Google Scholar
- Parames M L, Mariano J, Viskadourakis Z, Popovoco N, Rogalski M S, Giapintzakis J and Conde O 2006 Appl. Surf. Sci. 252 4610CrossRefGoogle Scholar
- Park C, Shi Y, Peng Y, Barmak K, Zhu J-G, Laughlin D E and White R M 2003 IEEE Trans. Magn. 39 2806CrossRefGoogle Scholar
- Sensor P, Fert A, Maurice J-L, Montaigne F, Petroff F and Vauress A 1999 Appl. Phys. Lett. 74 4017CrossRefGoogle Scholar
- Tiwari S, Choudhary R J, Prakash R and Phase D M 2007a J. Phys.: Condens. Matter 19 176002CrossRefGoogle Scholar
- Tiwari S, Prakash R, Choudhary R J and Phase D M 2007b J. Phys. D40 4943Google Scholar
- Versluijs J J, Bari M A and Coey J M D 2001 Phys. Rev. Lett. 87 026601CrossRefGoogle Scholar
- Voogt F C, Palstra T T M, Niesen L, Rogojanu O C, James M A and Hibma T 1998 Phys. Rev. B57 R8107Google Scholar
- Voogt F C, Fujii T, Smulders P J M, Niesen L, James M A and Hibma T 1999 Phys. Rev. B60 11193Google Scholar
- Williamson G K and Hall W H 1953 Acta Metall. 1 22CrossRefGoogle Scholar
- Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488CrossRefGoogle Scholar