Bulletin of Materials Science

, Volume 35, Issue 2, pp 221–231 | Cite as

Investigation of nonionic diazo dye-doped polymer dispersed liquid crystal film

  • YOUNG JAE JEONEmail author


Sudan black B (SBB) was used to investigate as the nonionic diazo dye-doped in polymer dispersed liquid crystal (PDLC) display, by polymerization-induced phase separation (PIPS) method. The maximum absorbance, contrast ratio, dichroic ratio and the order parameter of nonionic diazo dye in nemetic host (TL203) were investigated using UV–Vis polarized spectroscopy. The orientation of the dye molecules was controlled by electric field, which enabled the contrast ratio of the dye to be obtained by electrically switching. The change occurring on droplet morphologies and electro-optical properties of PDLC film with the change in contents of Sudan black dye and liquid crystals (LC) contents was investigated. We found an increase in LC droplet sizes with the increase of diazo dye and LC contents. Moreover the addition of small amount of nonionic diazo dye reduced the threshold voltage (V\(_{\boldsymbol{\rm th}})\), increased off-state transmittance, enhanced the contrast ratio and decreased the response time of dye-doped PDLC. Additionally the change in transition temperature of LC and changes in LC droplet morphologies with the addition of dye were also observed. Such changes were observed with the images taken by polarized optical microscope (POM). The detail discussions on such behaviours were also made.


Polymer dispersed liquid crystals (PDLC) polymer-induced phase separation (PIPS) droplet morphology order parameter dichroic dye contrast ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carter S A, Le Grange J D, White W, Boo J and Wiltzius P 1997 J. Appl. Phys. 81 9CrossRefGoogle Scholar
  2. Denk W, Strickler J H and Webb W W 1990 Science 248 73CrossRefGoogle Scholar
  3. Drzaic P S 1995 Liquid crystal dispersions (Singapore: World Scientific) Vol. 1, 22Google Scholar
  4. Farzana A et al 2011 J. Appl. Polym. Sci. 121 1424CrossRefGoogle Scholar
  5. Fergason J L 1984 US Patent No. 4435047Google Scholar
  6. Fergason J L 1985 SID Symposium Digest 16 68Google Scholar
  7. Fergason J L and Calif A 1983 US Patent No. 4596445Google Scholar
  8. Fuh Andy Y-G, Lee C-R and Mo T-S 2004 Mol. Cryst. Liq. Cryst. 413 579CrossRefGoogle Scholar
  9. Ghanadzadeh M S and Zakerhamidi H T 2004 J. Mol. Liq. 109 143CrossRefGoogle Scholar
  10. Grosicka E and Mucha M 2000 Mol. Cryst. Liq. Cryst. 353 417CrossRefGoogle Scholar
  11. Hall J E and Higgins D A 2003 Polym. Mater. Sci. Eng. 88 186Google Scholar
  12. Han J-W, Kang T J and Park G 2000 J. Korean Phys. Soc. 36 156Google Scholar
  13. Kelly J and Seekola D 1990 Proc. SPIE 1257 17CrossRefGoogle Scholar
  14. Kumar P and Raina K K 2007 Curr. Appl. Phys. 7 636CrossRefGoogle Scholar
  15. Kumar P, Raina K K and Malik P 2006 Bull. Mater. Sci. 29 599CrossRefGoogle Scholar
  16. Lee S H, Lim T K, Shin S T and Park K S 2002 Jpn. J. Appl. Phys. 41 208CrossRefGoogle Scholar
  17. Lin Y H, Ren H and Wu S T 2004 Appl. Phys. Lett. 84 4083CrossRefGoogle Scholar
  18. Liu Y J, Zheng Y B, Shi J, Huang H, Walker T R and Huang T J 2009 Opt. Lett. 34 2351 CrossRefGoogle Scholar
  19. Lovinger J, Amundson K R and Davis D D 1994 Chem. Mater. 6 1726CrossRefGoogle Scholar
  20. Malik P and Raina K K 2004 Opt. Mater. 27 613CrossRefGoogle Scholar
  21. Malik P and Raina K K 2010 Physica B 405 161CrossRefGoogle Scholar
  22. Malik P, Raina K K and Bubnov A M 2008 Mol. Cryst. Liq. Cryst. 494 242CrossRefGoogle Scholar
  23. Masutani A, Roberts T, Schüller B, Hollfelder N, Kilickiran P, Nelles G and Yasuda A 2006 Appl. Phys. Lett. 89 183514CrossRefGoogle Scholar
  24. Mei E and Higgins D A 1998 Langmuir 14 1945CrossRefGoogle Scholar
  25. Montgomery G P and Vaz N A 1987 Appl. Opt. 26 738CrossRefGoogle Scholar
  26. Montgomery Jr G P, West J L and Tamura-Lis W J 1991 J. Appl. Phys. 69 1605CrossRefGoogle Scholar
  27. Petti L, Abbate G, Blau W J, Mancarella D and Mormile P 2002 Mol. Cryst. Liq. Cryst. 375 785Google Scholar
  28. Rochon P, Gosselin J, Natansohn A and Xie S 1992 Appl. Phys. Lett. 60 4CrossRefGoogle Scholar
  29. Simoni F 1997 Non linear optical properties of LC & PDLCs (Singapore: World Scientific)Google Scholar
  30. Simoni F and Francescangeli O 2000 Int. J. Polym. Mater. 45 381CrossRefGoogle Scholar
  31. Springer G H and Higgins D A 2000 J. Am. Chem. Soc. 122 6801CrossRefGoogle Scholar
  32. Sutherland R L, Tondiglia V P, Natarajan L V, Bunning T J and Adams W W 1994 Appl. Phys. Lett. 64 1074CrossRefGoogle Scholar
  33. Urbas A, Tondiglia V, Natarajan L, Sutherland R, Yu H, Li J-H and Bunning T 2004 J. Am. Chem. Soc. 126 13580CrossRefGoogle Scholar
  34. Wen C-H, Gauza S and Wu S-T 2004 Liq. Cryst. 31 1479CrossRefGoogle Scholar
  35. West J L and Ondris-Crawford R 1991 J. Appl. Phys. 70 3785CrossRefGoogle Scholar
  36. Wu S T and Fuh A Y G 2005 Jpn. J. Appl. Phys. 44 977CrossRefGoogle Scholar
  37. Xu W, Zipfel J B, Shear Williams R M and Webb W W 1996 Proc. Nat. Acad. Sci. 93 10763CrossRefGoogle Scholar
  38. Yang K-J, Lee S-C and Choi B-D 2010 Jpn. J. Appl. Phys. 49 05EA05CrossRefGoogle Scholar
  39. Zhou J, Petti L, Mormile P and Roviello A 2003 Opt. Commun. 231 263CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

    • 1
    • 1
    • 2
    • 3
    • 1
    Email author
    • 1
    • 4
    • 4
  1. 1.Department of ChemistryKonkuk UniversitySeoulKorea
  2. 2.Division of International StudiesUniversity College, Konkuk UniversitySeoulKorea
  3. 3.Department of PhysicsKonkuk UniversitySeoulKorea
  4. 4.Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science and Technology, (DGIST)DaeguKorea

Personalised recommendations