Bulletin of Materials Science

, Volume 34, Issue 6, pp 1223–1231 | Cite as

Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy



Nucleation and growth, temperature measurements and microstructure observations of silicon phase are presented for strontium modified Al–7%Si (LM25) cast alloy treated with bismuth. The results show that addition of bismuth in strontium modified alloys may have a poisoning effect resulting in lost modification of the silicon phase. With increasing Bi/Sr ratio, thermal analysis measurements showed that the eutectic growth temperature increased remarkably to 573°C and recalescence decreased to 0·2°C and the morphology of silicon displayed the same flake-like structure as in the unmodified alloys. Microstructural observation showed that a minimum Bi/Sr ratio of 1·2 which is equivalent to a Sr/Bi ratio of 0·43 is required for effective strontium modification and neutralization of the poisoning effect of bismuth.


Thermal analysis bismuth modification aluminium alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apelian D, Sigworth G K and Whaler K R 1984 AFS Trans. 92 297Google Scholar
  2. Cho J I and Loper C R 2000 AFS Trans. 108 359Google Scholar
  3. Djurdjevic M, Jiang H and Sokolowski J 2001 Mater. Charact. 46 31CrossRefGoogle Scholar
  4. El-Hadad S, Samuel A M, Samuel F H, Doty H W and Valtierra S 2004 AFS Trans. 112 141Google Scholar
  5. Elliot R 1983 Eutectic solidification processing (London, UK: Butterworths & Co.)Google Scholar
  6. Emadi D, Whiting L V, Nafisi S and Ghomashchi R 2005 J. Therm. Anal. Calorim. 81 235CrossRefGoogle Scholar
  7. Farahany S, Ourdjini A, Idris M H and Thai T 2011 Trans. Nonferrous Met. Soc. China 21 1455CrossRefGoogle Scholar
  8. Golbahar B, Samuel F H, Samuel A M, Doty H W and Valtierra S 2007 AFS Trans. 115 07Google Scholar
  9. Gruzleski J E and Closset B M 1990 Treatment of liquid aluminium–silicon alloys (IL, USA: Americans Foundrymen’s Society Inc.)Google Scholar
  10. Hegde S and Narayan Prabhu K 2008 Mater. Sci. 43 3009CrossRefGoogle Scholar
  11. Heusler L and Schneider W 2002 Light Met. 2 17CrossRefGoogle Scholar
  12. Hosch T, England L G and Napolitano R E 2009 Mater. Sci. 44 4892CrossRefGoogle Scholar
  13. Knuutinen A, Nogita K, McDonald S D and Dahle A K 2001 Light Met. 1 229CrossRefGoogle Scholar
  14. Loper C R, Seong H G and Cho J I 2001 AFS Trans. 109 1Google Scholar
  15. Lu S Z and Hellawell A 1987 Metall. Trans. A18 1721Google Scholar
  16. Machovec C J, Byczynski G E, Zindel J W and Godlewski L A 2000 AFS Trans. 108 439Google Scholar
  17. Mohamed A M A, Samuel F H, Samuel A M and Doty D H W 2009 Metall. Mater. Trans. A40 240CrossRefGoogle Scholar
  18. Nogita K, Knuutinen A, McDonald S D and Dahle A K 2001 Light Met. 1 219CrossRefGoogle Scholar
  19. Pan E N, Cherng Y C, Lin C A and Chiou H S 1994 AFS Trans. 102 609Google Scholar
  20. Pillai N P and Anantharaman T R 1968 Trans. Metall. Soc. AIME 24 2025Google Scholar
  21. Qiyang L, Qingchun L and Qifu L 1991 Acta Met. 39 2497CrossRefGoogle Scholar
  22. Talbot D E J and Ransley C E 1997 Metall. Mater. Trans. A8 1149Google Scholar
  23. Wang W and Gruzleski J E 1990 AFS Trans. 98 227Google Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Materials Engineering DepartmentFaculty of Mechanical Engineering, UTM SkudaiJohorMalaysia

Personalised recommendations