Bulletin of Materials Science

, Volume 34, Issue 6, pp 1179–1183 | Cite as

Chemical synthesis and characterization of hydrous tin oxide (SnO 2 :H 2 O) thin films



In the present investigation, we report chemical synthesis of hydrous tin oxide (SnO 2 :H 2 O) thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature (\(\thicksim \)300 K). The films are characterized for their structural and surface morphological properties. The formation of nanocrystalline SnO 2 with porous and agglomerated particle morphology is revealed from X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, respectively. The Fourier transform infrared spectroscopy (FTIR) study confirmed the formation of Sn–O phase and hydrous nature of the deposited film. Static water contact angle studies showed the hydrophilic nature of SnO 2 :H 2 O thin film. Electrical resistivity showed the semiconducting behaviour with room temperature electrical resistivity of 10 5  \(\boldsymbol\Omega \) cm. The electrochemical properties studied in 0·5 M Na 2 SO 4 electrolyte showed a specific capacitance of 25 F g  − 1 at 5 mVs  − 1 scan rate.


Thin films chemical synthesis hydrous tin oxide FTIR electrical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G and Roumyantseva M 1998 J. Solid State Chem. 135 78CrossRefGoogle Scholar
  2. Bockman O, Ostvold T, Voyiatzis G A and Papatheodorou G N 2000 Hydrometallurgy 55 93CrossRefGoogle Scholar
  3. Burke L D and Whelan D P 1979 J. Electroanal. Chem. 103 179CrossRefGoogle Scholar
  4. Burke L D, Mulcahy J K and Venkatesan S 1977 J. Electroanal. Chem. 81 339CrossRefGoogle Scholar
  5. Chang S T, Leu I C and Hon M H 2005 J. Alloys Compd 403 335CrossRefGoogle Scholar
  6. Dhawale D S, More A M, Latthe S S, Rajpure K Y and Lokhande C D 2008 Appl. Surf. Sci. 254 3269CrossRefGoogle Scholar
  7. Hattori T, Athoh S, Tagawa T and Murakami J 1987 Preparation of catalysts IV (eds.) B Delmon et al (Amsterdam: Elsevier) p. 113CrossRefGoogle Scholar
  8. Hu C C, Chang K H and Wang C C 2007 Electrochim. Acta 52 4411CrossRefGoogle Scholar
  9. Karuppuchamy S and Jeong J M 2006 J. Oleo Sci. 55 263CrossRefGoogle Scholar
  10. Kostrikin A V, Spiridonov F M, Linko I V, Kosenkova O V, Kuznetsova R V and Komissarova L N 2007 Russ. J. Inorg. Chem. 52 1098CrossRefGoogle Scholar
  11. Li Y, Xie X, Liu J, Cai M, Rogers J and Shen W 2008 J. Chem. Eng. 136 398CrossRefGoogle Scholar
  12. Michell D, Rand D A J and Woods R 1978 J. Electroanal. Chem. 89 397CrossRefGoogle Scholar
  13. Park B O, Lokhande C D, Park H S, Jung K D and Joo O S 2004a Mater. Chem. Phys. 87 59CrossRefGoogle Scholar
  14. Park B O, Lokhande C D, Park H S, Jung K D and Joo O S 2004b J. Power Sources 134 148CrossRefGoogle Scholar
  15. Pathan H M and Lokhande C D 2004 Bull. Mater. Sci. 27 85CrossRefGoogle Scholar
  16. Pell W G and Conway B E 2001 J. Electro. Chem. 500 121CrossRefGoogle Scholar
  17. Subramanian V, Hall S C, Smith P H and Rambabu B 2004 Solid State Ionics 175 511CrossRefGoogle Scholar
  18. Tolstoy V P 2006 Russ. Chem. Rev. 75 61CrossRefGoogle Scholar
  19. Wang Y and Herron N 1991 J. Phys. Chem. 95 525CrossRefGoogle Scholar
  20. Yang L X, Zhu Y J, Tong H, Liang Z H, Li L and Zhang L 2007 J. Solid State Chem. 180 2095CrossRefGoogle Scholar
  21. Zheng J P, Cygan P J and Jow T R 1995 J. Electrochem. Soc. 142 2699CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations