Advertisement

Bulletin of Materials Science

, Volume 34, Issue 5, pp 1039–1048 | Cite as

Preparation and investigation of Al–4 wt % B4C nanocomposite powders using mechanical milling

  • A ALIZADEH
  • E TAHERI-NASSAJEmail author
  • H R BAHARVANDI
Article

Abstract

Boron carbide nanoparticles were produced using commercially available boron carbide powder (0·8 μm). Mechanical milling was used to synthesize Al nanostructured powder in a planetary ball-mill under argon atmosphere up to 20 h. The same process was applied for Al–4 wt % B4C nanocomposite powders to explore the role of nanosize reinforcements on mechanical milling stages. Scanning electron microscopy (SEM) analysis as well as apparent density measurements were used to optimize the milling time needed for completion of the mechanical milling process. The results show that the addition of boron carbide particles accelerate the milling process, leading to a faster work hardening rate and fracture of aluminum matrix. FE-SEM images show that distribution of boron carbide particles in aluminum matrix reaches a full homogeneity when steady state takes place. The better distribution of reinforcement throughout the matrix would increase hardness of the powder. To study the compressibility of milled powder, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles. For better distribution of reinforcement throughout the matrix, r, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles.

Keywords

Boron carbide nanoparticles mechanical milling Al–B4C nanocomposite powders compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdoli H, Salahi E, Farnoush H and Pourazrang K 2008 J. Alloys Compd 461 166CrossRefGoogle Scholar
  2. Alizadeh A, Taheri-Nassaj E and Ehsani N 2004 J. Eur. Ceram. Soc. 24 3227CrossRefGoogle Scholar
  3. Amador D R and Torralba J M 2003 J. Mater. Process. Technol. 143–144 776CrossRefGoogle Scholar
  4. Aparecida M, Dos Santos P and Costa A 2006 Powder Technol. 169 84CrossRefGoogle Scholar
  5. Boey F Y C, Yuan Z and Khor K A 1998 Mater. Sci. Eng. A252 276Google Scholar
  6. Davidson D L 1991 Mechanisms and properties, in Metal matrix composites (eds) R K Everett and R J Arsenault (San Diego: Academic Press) p. 217Google Scholar
  7. Denny P J 2002 Powder Technol. 127 162CrossRefGoogle Scholar
  8. Fogagnolo J B, Velasco F, Robert M H and Torralba J M 2003 Mater. Sci. Eng. A342 131Google Scholar
  9. Fogagnolo J B, Robert M H and Torralba J M 2006 Mater. Sci. Eng. A426 85Google Scholar
  10. Gan K K and Gu M Y 2006 Mater. Sci. Technol. 22 960CrossRefGoogle Scholar
  11. Heckel R W 1961 Trans. Metall. Soc. AIME 221 671Google Scholar
  12. Hu H M, Lavernia E J, Harrigan W C, Kajuch J and Nutt S R 2001 Mater. Sci. Eng. A297 94Google Scholar
  13. Jiang G, Wu W, Daehn G S and Wagoner R H 2000 Acta Mater. 48 4331CrossRefGoogle Scholar
  14. Jiang Q C, Wang H Y, Ma B X, Wang Y and Zhao F 2005 J. Alloys Compd 386 177CrossRefGoogle Scholar
  15. Kerti I and Toptan F 2008 Mater. Lett. 62 1215CrossRefGoogle Scholar
  16. Liua Y Q, Conga H T, Wanga W, Sun C H and Chenga H M 2009 Mater. Sci. Eng. A505 151Google Scholar
  17. Mndoza-Ruiz D C, Esneider-Alcala M A, Guel E, Yoshida M, Lopez M and Martinez R 2008 Rev. Adv. Mater. Sci. 18 280Google Scholar
  18. Mohanty R M, Balasubramanian K and Seshadri S K 2008 Mater. Sci. Eng. A498 42Google Scholar
  19. Moona O, Kim S, Jang J, Lee J and Lee C 2008 Mater. Sci. Eng. A487 552Google Scholar
  20. Onoro J, Salvador M D and Cambronero L E G 2009 Mater. Sci. Eng. A499 421Google Scholar
  21. Parvin N, Assadifard R, Safarzadeh P, Sheibani S and Marashi P 2008 Mater. Sci. Eng. A492 134Google Scholar
  22. Peter Martin L, Hodge A M and Campbell G H 2007 Scr. Mater. 57 229CrossRefGoogle Scholar
  23. Razavi Hesabi Z, Simchi A and Seyed Reihani S M 2006 Mater. Sci. Eng. A428 159Google Scholar
  24. Saberi Y, Zebarjad S M and Akbari G H 2009 J. Alloys Compd 484 637CrossRefGoogle Scholar
  25. Shinohara K, Golman B, Uchiyama T and Otani M 1999 Powder Technol. 103 292CrossRefGoogle Scholar
  26. Suryanarayana C and Grant Norton M 1998 X-ray diffraction: A practical approach (New York: Plenum Press)Google Scholar
  27. Suryanarayana C 2001 Prog. Mater. Sci. 46 1CrossRefGoogle Scholar
  28. Wang L, Choi H, Myoung J and Lee W 2009 Carbon 47 3427CrossRefGoogle Scholar
  29. Ye J, He J and Schoenung J M 2006 Metall. Mater. Trans. A37 3099CrossRefGoogle Scholar
  30. Zhang D L, Liang J and Wu J 2004 Mater. Sci. Eng. A375 911Google Scholar
  31. Zhang H, Ramesh K T and Chin E S 2004 Mater. Sci. Eng. A384 26Google Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTarbiat Modares UniversityTehranIran
  2. 2.MUT UniversityTehranIran

Personalised recommendations