Bulletin of Materials Science

, Volume 34, Issue 3, pp 469–475 | Cite as

Synthesis, growth, optical, mechanical and electrical properties of L-lysine L-lysinium dichloride nitrate (L-LLDN) single crystal

  • R RAMESH BABUEmail author


Semi-organic nonlinear optical material, L-lysine L-lysinium dichloride nitrate (2C6H15N2O\(_{2}^{+}\) · H +  · NO\(_{3}^{-}\) · 2Cl − ) was synthesized at room temperature. Single crystals of L-LLDN were grown by slow cooling solution growth technique. The grown crystal was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown single crystal was characterized by high-resolution X-ray diffraction (HRXRD) studies. The cut-off wavelength was determined by UV-vis transmission spectral analysis. The frequency doubling of the grown crystal was confirmed by powder second harmonic generation (SHG) measurement. The refractive index and birefringence of the crystal were determined using He–Ne laser source. Mechanical property of the crystal was determined by Vickers hardness tester. The frequency and temperature dependence of dielectric constant (ε r), dielectric loss (tan δ) and a.c. conductivity (σ ac) were also measured.


Nonlinear optical material crystal growth high-resolution X-ray diffraction refractive index birefringence dielectric materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal M D and Rao K V 1970 J. Phys. C: Solid State Phys. 3 1120CrossRefGoogle Scholar
  2. Batterman B W and Cole H 1964 Rev. Mod. Phys. 36 681CrossRefGoogle Scholar
  3. Bhagavannarayana G and Kushwaha S K 2010 J. Appl. Crystallogr. 43 154CrossRefGoogle Scholar
  4. Bhagavannarayana G, Parthiban S and Meenakshisundaram S 2006 J. Appl. Crystallogr. 39 784CrossRefGoogle Scholar
  5. Bhagavannarayana G, Parthiban S and Meenakshisundaram S 2008 Cryst. Growth Des. 8 446CrossRefGoogle Scholar
  6. Bosman A J and Havinga E E 1963 Phys. Rev. 129 1593CrossRefGoogle Scholar
  7. Briget Mary M, Umadevi M and Ramakrishnan V 2005 Spectrochim. Acta A 61 3124CrossRefGoogle Scholar
  8. Fischer D W and Ohmer M C 1995 J. Appl. Phys. 77 5942CrossRefGoogle Scholar
  9. Kar S, Verma S, and Bartwal K S 2008 Cryst. Growth Des. 8 4424CrossRefGoogle Scholar
  10. Kar S, Verma S and Bartwal K S 2009 Cryst. Res. Technol. 44 305CrossRefGoogle Scholar
  11. Lal K and Bhagavannarayana G 1989 J. Appl. Crystallogr. 22 209CrossRefGoogle Scholar
  12. Marchewka M K, Debrus S and Ratajczak H 2003 Cryst. Growth Des. 3 587CrossRefGoogle Scholar
  13. Nasr A M 2007 Int. J. Mater. Sci. 2 103Google Scholar
  14. Sasaki T and Yokotani A 1990 J. Cryst. Growth 99 820CrossRefGoogle Scholar
  15. Sindhu S, Anantharaman M R, Thampi B P, Malini K A and Kurian P 2002 Bull. Mater. Sci. 25 599CrossRefGoogle Scholar
  16. Srinivasan N, Sridhar B and Rajaram R K 2001 Acta Crystallogr. E57 888Google Scholar
  17. Sun Z H, Xu D, Wang X Q, Zhang G H, Yu G, Zhu L Y and Fan H L 2009 Mater. Res. Bull. 44 925CrossRefGoogle Scholar
  18. Tsunesada F, Iwai T, Watanabe T, Adachi H, Yoshimura M, Mori Y and Sasaki T 2002 J. Cryst. Growth 237–239 2104CrossRefGoogle Scholar
  19. Zhang Y, Li H, Xi B, Che Y and Zheng J 2008 Mater. Chem. Phys. 108 192CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

    • 1
    • 1
    Email author
    • 1
    • 2
    • 1
  1. 1.Crystal Growth and Thin Film Laboratory, Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Materials Characterization DivisionNational Physical LaboratoryNew DelhiIndia

Personalised recommendations