Bulletin of Materials Science

, Volume 34, Issue 3, pp 455–462 | Cite as

Dielectric relaxation in double perovskite oxide, Ho2CdTiO6



A new double perovskite oxide holmium cadmium titanate, Ho2CdTiO6 (HCT), prepared by solid state reaction technique is investigated by impedance spectroscopy in a temperature range 50–400°C and a frequency range 75 Hz–1 MHz. The crystal structure has been determined by powder X-ray diffraction which shows monoclinic phase at room temperature. An analysis of complex permittivity with frequency was carried out assuming a distribution of relaxation times as confirmed by Cole–Cole plot. The frequency dependent electrical data are analysed in the framework of conductivity and electric modulus formalisms. The frequencies corresponding to the maxima of the imaginary electric modulus at various temperatures are found to obey an Arrhenius law with an activation energy of 0·13 eV. The scaling behaviour of imaginary part of electric modulus suggests that the relaxation describes the same mechanism at various temperatures. Nyquist plots are drawn to identify an equivalent circuit and to know the bulk and interface contributions.


Holmium cadmium titanate double perovskite dielectric relaxation impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson M T, Greenwood K B, Tailor G A and Poeppelmeier K R 1993 Prog. Solid State Chem. 22 197CrossRefGoogle Scholar
  2. Bharti C and Sinha T P 2010 Solid State Sci. 12 498CrossRefGoogle Scholar
  3. Bidault O, Goux P, Kchikech M, Belkaoumi M and Maglione M 1994 Phys. Rev. B 49 7868CrossRefGoogle Scholar
  4. Claeson T, Boyce J B, Bridges F, Gebale T H, Remeika J M and Sleight A W 1989 J. Phys. C 162164 544Google Scholar
  5. Cole K S and Cole R H 1941 J. Chem. Phys. 19 1484Google Scholar
  6. DeMarco M 2000 Phys. Rev. B62 14301Google Scholar
  7. Dutta A, Sinha T P and Shannigrahi S 2010 Jpn. J. Appl. Phys. 49 061504CrossRefGoogle Scholar
  8. Gerhardt R 1994 J. Phys. Chem. Solids 55 1491CrossRefGoogle Scholar
  9. Goodenough J B 1955 Phys. Rev. 100 564CrossRefGoogle Scholar
  10. Hewat A W 1973 J. Phys. C6 1074Google Scholar
  11. Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature (London) 395 677CrossRefGoogle Scholar
  12. Kumar R, Tomy C V, Nagarajan R, Paulose P L and Malik S K 2009 Physica B 404 2369CrossRefGoogle Scholar
  13. Kyritsis A, Pissis P and Grammatikakis J 1995 J. Polym. Sci. Polym. Phys. 33 1737CrossRefGoogle Scholar
  14. Lucuta P G, Constantinescu F and Barb D 1985 J. Am Ceram. Soc. 68 533CrossRefGoogle Scholar
  15. Mitchell R H 2002 Perovskite: Modern and ancient (Ont, Canada: Almaz Press)Google Scholar
  16. Raveau B 2007 Prog. Solid State Chem. 35 171CrossRefGoogle Scholar
  17. Saines P J, Kennedy B J and Elcombe M M 2007 Solid State Chem. 180 401CrossRefGoogle Scholar
  18. Sleight A W, Gillson J L and Bierdstedt P E 1993 Solid State Commun. 88 841CrossRefGoogle Scholar
  19. Vijaykumar C, Kumar H P, Kavitha V T, Solomon S, Thomas J K, Wariar P R S and Koshy J 2009 J. Alloy Compd 475 778CrossRefGoogle Scholar
  20. Zhao F, Yue Z, Gui Z and Li L 2005 Jap. J. Appl. Phys. 44 8066CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology Patna, Ashok RajpathPatnaIndia
  2. 2.Department of PhysicsBose InstituteKolkataIndia

Personalised recommendations