Bulletin of Materials Science

, Volume 33, Issue 2, pp 129–134

Impedance spectroscopy of Ba3Sr2DyTi3V7O30 ceramic

  • P. S. Sahoo
  • A. Panigrahi
  • S. K. Patri
  • R. N. P. Choudhary


Polycrystalline sample of Ba3Sr2DyTi3V7O30 was prepared at 950°C using a high-temperature solid-state reaction technique. X-ray structural analysis indicated the formation of a single-phase orthorhombic structure with lattice parameters: a = 12·2719 (39) Å, b = 8·9715(39) Å and c = 19·7812(39) Å. Microstructural study showed densely packed uniform distribution of grains over the surface of the sample. The a.c. impedance plots were used as tools to analyse the electrical response of the sample as a function of frequency at different temperatures (30–500°C). These plots revealed the presence of grain boundary effect, from 200·C onwards. Complex impedance analysis showed non-Debye type of dielectric relaxation. The Nyquist plots showed the negative temperature coefficient of resistance character of Ba3Sr2DyTi3V7O30. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is the same, and hence the relaxation process may be attributed to the same type of charge carrier.


Ceramics X-ray diffraction dielectric properties electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen T C, Thio C and Desu S B 1997 J. Mater. Res. 12 2628CrossRefADSGoogle Scholar
  2. Choudhary R N P, Pradhan D K, Tirado C M, Bonilla G E and Katiyar R S 2006 J. Appl. Phys. 100 1CrossRefGoogle Scholar
  3. Choudhary R N P, Pradhan D K, Tirado C M, Bonilla G E and Katiyar R S 2007 Phys. Status Solidi (b) 244 2254CrossRefADSGoogle Scholar
  4. Jiang W, Cao W, Yi X and Chen H 2005 J. Appl. Phys. 97 094106/1-4ADSGoogle Scholar
  5. Jonscher A K 1977 Nature 267 673CrossRefADSGoogle Scholar
  6. Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea Dielectric Press)Google Scholar
  7. Klug H P 1974 X-ray diffraction procedures for polycrystalline and amorphous materials (ed.) L E Alexander (New York: Wiley-Interscience)Google Scholar
  8. MacDonald J R 1987 Impedance spectroscopy (New York: Wiley)Google Scholar
  9. POWDMULT: An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinder University of South Australia Bradford Park, SA 5042, AustraliaGoogle Scholar
  10. Ranga Raju M R and Choudhary R N P 2003 Mater. Lett. 57 2980CrossRefGoogle Scholar
  11. Saha S and Sinha T P 2002 Phys. Rev. B65 134103ADSGoogle Scholar
  12. Sahoo P S, Panigrahi A, Patri S K and Choudhary R N P 2008a Mod. Phys. Lett. B22 2999ADSGoogle Scholar
  13. Sahoo P S, Panigrahi A, Patri S K and Choudhary R N P 2008b CEJP (in press)Google Scholar
  14. Singh K S, Sati R and Choudhary R N P 1992 J. Mater. Sci. Lett. 11 788CrossRefGoogle Scholar
  15. Stenger C G F and Burggraaf A J 1980 J. Phys. Chem. Solids 41 17CrossRefADSGoogle Scholar
  16. Suman C K, Prasad K and Choudhary R N P 2005 Adv. Appl. Ceram. 104 294CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  • P. S. Sahoo
    • 2
  • A. Panigrahi
    • 3
  • S. K. Patri
    • 1
  • R. N. P. Choudhary
    • 1
  1. 1.Department of Physics and MeteorologyIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of PhysicsBetnoti CollegeBetnotiIndia
  3. 3.Department of PhysicsD.N. CollegeItanagarIndia

Personalised recommendations