Bulletin of Materials Science

, Volume 32, Issue 3, pp 263–270 | Cite as

Effect of microstructural evolution on magnetic properties of Ni thin films

  • Prashant Kumar
  • M. Ghanashyam Krishna
  • A. K. Bhattacharya


The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.


Magnetic thin films thermal evaporation substrate temperature atomic force microscopy phase contrast imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amoruso S, Ausanio G, Lisio C D, Iannotti V, Vitiello M, Wang X and Lanotte L 2005 Appl. Surf. Sci. 247 71CrossRefADSGoogle Scholar
  2. Aurongzeb D, Ram K B and Menon L 2005 Appl. Phys. Lett. 87 172509Google Scholar
  3. Barmak K et al 2006 Scr. Mater. 54 1059CrossRefADSGoogle Scholar
  4. Battle X and Labarta A 2002 J. Phys. D: Appl. Phys. 35 R15CrossRefADSGoogle Scholar
  5. Bertotti G 1998 Hysteresis in magnetism (London, UK: Academic Press) p. 375Google Scholar
  6. Castaldi L, Gibbs M R J and Davies H A 2004 J. Appl. Phys. 96 5063CrossRefADSGoogle Scholar
  7. Chan K Y, Tou T Y and Teo B S 2006 Microelectronics J. 37 930CrossRefGoogle Scholar
  8. Chang S W, Liu J H and Lue J T 2003 Meas. Sci. Technol. 14 583CrossRefADSGoogle Scholar
  9. Cullity B D 1972 Introduction to magnetic materials (MA: Addison-Wesley) p. 387Google Scholar
  10. Dirks A G and Leamy H J 1977 Thin Solid Films 47 219CrossRefADSGoogle Scholar
  11. Flynn D and Desmulliez M 2006 J. Phys.: Conf. Ser. 34 112CrossRefADSGoogle Scholar
  12. Fujikawa K, Suzuki S, Koike Y, Chun W J and Asakura K 2006 Surf. Sci. 600 L117CrossRefADSGoogle Scholar
  13. Gafner Y Y, Gafner S L and Entel P 2004 Phys. Solid State 46 1327CrossRefADSGoogle Scholar
  14. Girgis E, Pogossian S P and Benkhedar M L 2006 J. Nanosci. Nanotechnol. 6 1135PubMedCrossRefGoogle Scholar
  15. Guan S and Nelson B J 2005 J. Magn. Magn. Mater. 292 49CrossRefADSGoogle Scholar
  16. Gupta N, Verma A, Kashyap S C and Dube D C 2007 J. Magn. Magn. Mater. 308 137CrossRefADSGoogle Scholar
  17. Ha K, Ciria M, O’Handley R C, Stephens P W and Pagola S 1999 Phys. Rev. B19 13780Google Scholar
  18. Ha N D, Phan M H and Kim C O 2006 J. Appl. Phys. 99 08F105–1CrossRefGoogle Scholar
  19. Haque S A, Matsuo A, Seino Y, Yamamoto Y, Yamada S and Hori H 2001 Physica B305 121ADSGoogle Scholar
  20. Herger G 1992 J. Magn. Magn. Mater. 112 258CrossRefADSGoogle Scholar
  21. Hong J, Gary S W, Jones J W and Moody N R 1997 J. Appl. Phys. 81 6754CrossRefADSGoogle Scholar
  22. Hsieh C T, Liu J Q and Lue J T 2005 Appl. Surf. Sci. 252 1899CrossRefADSGoogle Scholar
  23. Kachkachi H, Nogues M, Tronc E and Garanin D A 2000 J. Magn. Magn. Mater. 221 158CrossRefADSGoogle Scholar
  24. Kim J G, Han K H, Song S H and Reilly A 2003 Thin Solid Films 440 54CrossRefADSGoogle Scholar
  25. Klapetek P, Ohlídal I and Buršík J 2007 Meas. Sci. Technol. 18 528CrossRefADSGoogle Scholar
  26. Lukaszew R A, Zhang Z, Stoica V and Clarke R 2003 Appl. Surf. Sci. 219 74CrossRefADSGoogle Scholar
  27. Messier R, Giri A P and Roy R A 1984 J. Vac. Sci. Technol. 2 500CrossRefADSGoogle Scholar
  28. Novikov V Y 1999 Acta Mater. 47 4507CrossRefGoogle Scholar
  29. Ohandley R C 2000 Modern magnetic materials (New York: Wiley Interscience) p. 306Google Scholar
  30. Ravinder D, Kumar K V and Reddy A V R 2003 Mater. Letts 57 4162CrossRefGoogle Scholar
  31. Savaloni H and Shaharaki M G 2004 Nanotechnology 15 311CrossRefADSGoogle Scholar
  32. Sedlácková K, Lobotka P, Vávra I and Radnóczi G 2005 Carbon 43 2192CrossRefGoogle Scholar
  33. Seel S C, Thompson C V, Hearne S J and Floro J A 2000 J. Appl. Phys. 88 7079CrossRefADSGoogle Scholar
  34. Serrona L K E B et al 2003 Appl. Phys. Lett. 82 1751CrossRefADSGoogle Scholar
  35. Shalyguina E E, Mukasheva M A, Abrosimova N M, Kozlovskii L, Tamanis E and Shalygin A N 2006 J. Magn. Magn. Mater. 300 e367CrossRefADSGoogle Scholar
  36. Shimizu H, Hayashi T, Nishinaga T and Tanaka M 1999 Appl. Phys. Lett. 74 398CrossRefADSGoogle Scholar
  37. Snyder D W, Mahajan S, Ko E I and Sides P J 1991 Appl. Phys. Lett. 58 848CrossRefADSGoogle Scholar
  38. Swerts J, Temst K, Vandamme N, Haesendonck C V and Bruynseraede Y 2002 J. Magn. Magn. Mater. 240 380CrossRefADSGoogle Scholar
  39. Thompson C V 1999 J. Mater. Res. 14 3164CrossRefADSGoogle Scholar
  40. Wang Y H, Sood D K and Ghantasala M K 2002 Proc. SPIE 4936 394CrossRefADSGoogle Scholar
  41. Yang J, Huang Y and Xu K 2007 Surf. Coat. Technol. 201 5574CrossRefGoogle Scholar
  42. Yi J B et al 2004 J. Magn. Magn. Mater. 284 303CrossRefADSGoogle Scholar
  43. Zhang K, Rotter F, Uhrmacher M, Ronning C, Krauser J and Hofsäss H 2007 New J. Phys. 9 29CrossRefADSGoogle Scholar
  44. Zhang W H, Sun C Q and Li S 2004 Solid State Commun. 130 603CrossRefADSGoogle Scholar
  45. Zhao Y P, Gamache R M, Wang G C, Lu T M, Palasantzas G and Hosson J T M D 2001 J. Appl. Phys. 89 1325CrossRefADSGoogle Scholar
  46. Zheng G P, Gross D and Li M 2003 J. Appl. Phys. 93 7652CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  • Prashant Kumar
    • 1
  • M. Ghanashyam Krishna
    • 1
  • A. K. Bhattacharya
    • 2
  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.Department of Engineering SciencesOxford UniversityOxfordUK

Personalised recommendations