Advertisement

Bulletin of Materials Science

, Volume 32, Issue 2, pp 177–181 | Cite as

Effects of talc and clay addition on pressureless sintering of porous Si3N4 ceramics

  • Fangli Yu
  • Jianfeng Yang
  • Yaohui Xue
  • Jun Du
  • Yuan Lu
  • Jiqiang Gao
Article

Abstract

Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering additives by pressureless sintering technology and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics consisted of elongated β-Si3N4 and small Si2N2O grains. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions. Adding 20% talc and clay sintered at 1700°C for 2 h, the porous Si3N4 ceramics were obtained with excellent properties. The final mechanical properties of the Si3N4 ceramics were as follows: porosity, P 0 = 45·39%; density, ρ = 1·663·g·cm−3; flexural strength, σ b (average) = 131·59 MPa; Weibull modulus, m = 16·20.

Keywords

Talc clay pressureless sintering porous Si3N4 mechanical properties Weibull distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold M, Boccaccini A R and Ondracek G 1996 J. Mater. Sci. 31 463CrossRefADSGoogle Scholar
  2. Bazant Z P 2004 Prob. Eng. Mech. 19 307CrossRefGoogle Scholar
  3. Emoto H, Hirotsuru H and Mitomo M 1999 Key Eng. Mater. 159–160 215CrossRefGoogle Scholar
  4. Hampshire S and Jack K H 1983 Progress in nitrogen ceramics (ed.) F L Riley (The Hague: Martinus Nijhoff Publisher) pp 225–230Google Scholar
  5. Inagaki Y, Ohji T, Kanzaki S and Shigegaki Y 2000 J. Am. Ceram. Soc. 83 1807Google Scholar
  6. Jonker A and Potgieter J H 2005 J. Eur. Ceram. Soc. 25 3145CrossRefGoogle Scholar
  7. Kawai C and Yamakawa A 1997 J. Am. Ceram. Soc. 80 2705Google Scholar
  8. Kawai C and Yamakawa A 1998 Ceram. Int. 24 135CrossRefGoogle Scholar
  9. Lee B T and Kim H D 2004 Mater. Sci. Eng. A364 126Google Scholar
  10. Lifzhitz I M and Slyozov V V 1961 J. Phys. Chem. Solids 19 35CrossRefADSGoogle Scholar
  11. Mitomo M, Ono S and Asami T 1989 Ceram. Int. 10 14Google Scholar
  12. Shigegaki Y, Brito M E, Hirao K, Toriyama M and Kanzaki S 1997 J. Am. Ceram. Soc. 82 495Google Scholar
  13. Weibull W 1951 J. Appl. Mech. 18 293zbMATHGoogle Scholar
  14. Yang J F, Ohji T and Niihar A K 2000 J. Am. Ceram. Soc. 83 2094CrossRefGoogle Scholar
  15. Yang J F, Zhang G J and Ohji T 2001 J. Am. Ceram. Soc. 84 1639CrossRefGoogle Scholar
  16. Yang J, Yang J F, Shan S Y, Gao J Q and Ohji T 2006 J. Am. Ceram. Soc. 89 3843CrossRefGoogle Scholar
  17. Zaman J and Chakma A 1994 J. Membr. Sci. 92 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  • Fangli Yu
    • 1
  • Jianfeng Yang
    • 1
  • Yaohui Xue
    • 2
  • Jun Du
    • 1
  • Yuan Lu
    • 1
  • Jiqiang Gao
    • 1
  1. 1.State Key Laboratory for Mechanical Behaviour of MaterialsXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.The School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anP.R. China

Personalised recommendations