Advertisement

Bulletin of Materials Science

, Volume 31, Issue 5, pp 723–728 | Cite as

Thermodynamic analysis of growth of iron oxide films by MOCVD using tris(t-butyl-3-oxo-butanoato)iron(III) as precursor

Article

Abstract

Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the β-ketoesterate complex of iron [tris(t-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen. The calculations predict, under different CVD conditions such as temperature and pressure, the deposition of carbon-free pure Fe3O4, mixtures of different proportions of Fe3O4 and Fe2O3, and pure Fe2O3. The regimes of these thermodynamic CVD parameters required for the deposition of these pure and mixed phases have been depicted in a ‘CVD phase stability diagram’. In attempts at verification of the thermodynamic calculations, it has been found by XRD and SEM analysis that, under different conditions, MOCVD results in the deposition of films comprising pure and mixed phases of iron oxide, with no carbonaceous impurities. This is consistent with the calculations.

Keywords

MOCVD pure and mixed iron oxide films CVD phase stability diagrams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apátiga L M and Castaño V M 2006 Thin Solid Films 496 576CrossRefGoogle Scholar
  2. Bernard C, Pons C M, Blanquet E and Madar R 1999 MRS Bull. 24 27Google Scholar
  3. Dhar S, Dharmaprakash M S and Shivashankar S A 2008 Bull. Mater. Sci. 31 67CrossRefGoogle Scholar
  4. Eriksson G 1971 Acta Chem. Scand. 25 651Google Scholar
  5. Fujii T, Takano M, Katano R and Bando Y 1989 J. Appl. Phys. 66 3168CrossRefGoogle Scholar
  6. Kang S Y, Choi K H, Lee S K, Hwang C S and Kim H J 2000 J. Electrochem. Soc. 147 1161CrossRefGoogle Scholar
  7. Kingery W D, Bowen H K and Uhlmann D R 1976 Introduction to ceramics (New York: John Wiley and Sons)Google Scholar
  8. Lee J Y, Kang B C, Jung D Y and Boo J H 2007 J. Vac. Sci. Technol. B25 151Google Scholar
  9. Mane A U and Shivashankar S A 2003 J. Crystal Growth 254 368Google Scholar
  10. Mathur S, Veith M, Sivakov V, Shen H, Huch V, Hartmann U and Gao H B 2002 Chem. Vap. Depos. 8 277CrossRefGoogle Scholar
  11. Mathur S, Sivakov V, Shen H, Barth S, Cavelius C, Nilsson A and Kuhn P 2006 Thin Solid Films 502 88CrossRefGoogle Scholar
  12. Mukhopadhyay S, Shalini K, Lakshmi R, Devi A and Shivashankar S A 2002a Surf. Coat. Technol. 150 205CrossRefGoogle Scholar
  13. Mukhopadhyay S, Shalini K, Devi A and Shivashankar S A 2002b Bull. Mater. Sci. 25 391CrossRefGoogle Scholar
  14. Ottosson M and Carlsson J 1996 Surf. Coat. Technol. 78 286CrossRefGoogle Scholar
  15. Paranjape M A, Mane A U, Raychaudhuri A K, Shalini K, Shivashankar S A and Chakravarty B R 2002 Thin Solid Films 413 8CrossRefGoogle Scholar
  16. Park S, Lim S and Choi H 2006 Chem. Mater. 18 5150CrossRefGoogle Scholar
  17. Pflitsch C, Viefhaus D, Bergmann U, Kravets V, Nienhaus H and Atakan B 2006 J. Electrochem. Soc. 153 C546CrossRefGoogle Scholar
  18. Shalini K, Subbanna G N, Chandrasekaran S and Shivashankar S A 2003 Thin Solid Films 424 56CrossRefGoogle Scholar
  19. Stringfellow G B 1989 Organometallic vapour phase epitaxy-theory and practice (New York: Academic Press) Ch. 3Google Scholar
  20. Urs U K, Shalini K, Dharmaprakash M S, Shivashankar S A and Row T N G 2000 Acta Crystallogr. C56 e448Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations