Bulletin of Materials Science

, Volume 31, Issue 4, pp 699–711 | Cite as

Inhibition of corrosion of mild steel in acid media by N′-benzylidene-3-(quinolin-4-ylthio)propanohydrazide

Article

Abstract

In the present investigation a new corrosion inhibitor, N′-(3,4-dihydroxybenzylidene)-3-{[8-(trifluoromethyl)quinolin-4-yl]thio}propanohydrazide(DHBTPH) was synthesized, characterized and tested as a corrosion inhibitor for mild steel in HCl (1 M, 2 M) and H2SO4 (0·5 M, 1 M) solutions using weight-loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The corrosion inhibition efficiency measured by all the above three techniques were in good agreement with each other. The results showed that DHBTPH is a very good inhibitor for mild steel in acidic media. The inhibition efficiency in different acid media was found to be in the decreasing order 0·5 M H2SO4 > 1 M HCl > 1 M H2SO4 > 2 M HCl. The inhibition efficiency increases with increasing inhibitor concentration and with increasing temperature. It acts as an anodic inhibitor. Thermodynamic and activation parameters are discussed. Adsorption of DHBTPH was found to follow the Langmuir’s adsorption isotherm. Chemisorption mechanism is proposed. The mild steel samples were also analysed by scanning electron microscopy (SEM).

Keywords

Activation energy adsorption isotherms corrosion inhibitors mild steel scanning electron microscopy thermodynamic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Rehim S S, Ibrahim M A M and Khaled K F 1999 J. Appl. Electrochem. 29 593CrossRefGoogle Scholar
  2. Agrawal R and Namboodhiri T K G 1990 Corros. Sci. 30 37CrossRefGoogle Scholar
  3. Allais, Andre and Meier Jean 1969 (Roussel-UCLAF) Ger. Offen. 1815467Google Scholar
  4. Ammar I A and Khorafi F M El 1973 Werkst. Korros. 24 702CrossRefGoogle Scholar
  5. Banerjee G and Malhotra S N 1992 Corrosion 48 10Google Scholar
  6. Bentiss F, Traisnel M and Lagrenee M 2000 Corros. Sci. 42 127CrossRefGoogle Scholar
  7. Bentiss F, Traisnel M and Lagrenee M 2001 J. Appl. Electrochem. 31 41CrossRefGoogle Scholar
  8. Bentiss F, Lagrenee M, Mehdi B, Mernari B, Traisnel M and Vezin H 2002 Corrosion 58 399Google Scholar
  9. Bentiss F, Lebrini M and Lagrenee M 2005 Corros. Sci. 47 2915CrossRefGoogle Scholar
  10. Bouklah M, Hammouti B, Lagrenee M and Bentiss F 2006 Corros. Sci. 48 2831CrossRefGoogle Scholar
  11. Durnie W, Marco R D, Jefferson A and Kinsella A B 1999 J. Electrochem. Soc. 146 1751CrossRefGoogle Scholar
  12. Emregul Kaan C, Kurtaran Raif and Atakol Orhan 2003 Corros. Sci. 45 2803CrossRefGoogle Scholar
  13. Foad E E and Sherbini El 1999 Mater. Chem. Phys. 60 286CrossRefGoogle Scholar
  14. Ivanov E S 1986 Inhibitors for metal corrosion in acid media (Moscow: Metallurgy)Google Scholar
  15. Juttner K 1990 Electrochim. Acta 35 1501CrossRefGoogle Scholar
  16. Keera S T 2003 J. Sci. Ind. Res. 62 188Google Scholar
  17. Khaled F, Babic-Samardzija K and Hackerman N 2004 J. Appl. Electrochem. 34 697CrossRefGoogle Scholar
  18. Khamis E 1990 Corrosion 46 6Google Scholar
  19. Marsh J 1988 Advanced organic chemistry (New Delhi: Wiley Eastern) 3rd ed.Google Scholar
  20. McCafferty E and Hackerman N 1972 J. Electrochem. Soc. 119 146CrossRefGoogle Scholar
  21. Mehaute A H and Grepy G 1989 Solid State Ionics 9–10 17Google Scholar
  22. Mora-Mendoza J L, Chacon-Nava J G, Zavala-Olivares G, Gonzalez-Nunez M A and Turgoose S 2002 Corros. Eng. 58 608CrossRefGoogle Scholar
  23. Muralidharan S, Quraishi M A and Iyer S V K 1995 Corros. Sci. 37 1739CrossRefGoogle Scholar
  24. Popova A, Christov M, Raicheva S and Sokolova E 2004 Corros. Sci. 46 1333CrossRefGoogle Scholar
  25. Quraishi M A and Jamal D 2002 J. Appl. Electrochem. 32 425CrossRefGoogle Scholar
  26. Quraishi M A, Jamal D and Singh R N 2002 Corrosion 58 201Google Scholar
  27. Reinhard G and Rammet U 1985 in Proceedings 6th European symposium on corrosion inhibitors (Ferrara: Ann. University) p. 831Google Scholar
  28. Rengamani S, Muralidharan S, Anbu Kulamdainathan M and Venkatakrishna Iyer S 1994 J. Appl. Electrochem. 24 355CrossRefGoogle Scholar
  29. Stoynov Z B, Grafov B M, Savova-Stoynova B and Elkin V V 1991 Electrochemical impedance (Moscow: Nauka)Google Scholar
  30. Tang Libin, Li Xueming and Li Lin 2006 Mater. Chem. Phys. 97 301CrossRefGoogle Scholar
  31. Vishwanatham S and Anil Kumar 2005 Corros. Rev. 23 181Google Scholar
  32. Wang Hui-Long, Liu Rui-Bin and Xin Jian 2004 Corros. Sci. 46 2455CrossRefGoogle Scholar
  33. Yurt A, Bereket G, Kivrak A, Balaban A and Erk B 2005 J. Appl. Electrochem. 35 1025CrossRefGoogle Scholar
  34. Zor Sibel, Dogan Pinar and Yazici Birgul 2005 Corros. Rev. 23 217Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologySurathkalIndia

Personalised recommendations