Bulletin of Materials Science

, Volume 31, Issue 3, pp 573–577 | Cite as

In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition

  • Preetam Singh
  • Ashvani Kumar
  • Ajay Kaushal
  • Davinder Kaur
  • Ashish Pandey
  • R. N. Goyal
Article

Abstract

Ultrasonic mist chemical vapour deposition (UM-CVD) system has been developed to prepare ZnO nanopowder. This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using transmission electron microscopy (TEM) and field emission electron microscope (FESEM). The optical properties are observed using UV-visible spectrophotometer. The influence of high temperature vacuum annealing on XRD pattern is systematically studied. Results of high temperature XRD showed prominent 100, 002 and 101 reflections among which 101 is of highest intensity. With increase in temperature, a systematic shift in peak positions towards lower 2θ values has been observed, which may be due to change in lattice parameters. Temperature dependence of lattice constants under vacuum shows linear increase in their values. Diffraction patterns obtained from TEM are also in agreement with the XRD data. The synthesized powder exhibited the estimated direct bandgap (Eg) of 3.43 eV. The optical bandgap calculated from Tauc’s relation and the bandgap calculated from the particle size inferred from XRD were in agreement with each other.

Keywords

High temperature XRD ZnO nanopowder ultrasonic mist chemical vapour deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee R, Sperling E A, Thompson G B, Fraser H L, Bose S and Ayyub P 2003 Appl. Phys. Lett. 82 4250CrossRefGoogle Scholar
  2. Brus L E 1984a J. Chem. Phys. 80 1CrossRefGoogle Scholar
  3. Brus L E 1984b J. Chem. Phys. 80 4403CrossRefGoogle Scholar
  4. Chia C H, Makino T, Tamura K, Segawa Y, Kawasaki M, Ohtomo A and Koinuma H 2003 Appl. Phys. Lett. 82 1848CrossRefGoogle Scholar
  5. Cullity B D 1970 Elements of X-ray diffraction (Addison-Wesley) p. 102Google Scholar
  6. Kim Y M, Yoon M, Park I W, Park Y J and Lyou J H 2004 Solid State Commun. 129 175CrossRefGoogle Scholar
  7. Lamber R, Wetjen S and Jaeger N I 1995 Phys. Rev. B51 10968Google Scholar
  8. Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H and Lee H 2002 Appl. Phys. Lett. 81 3648CrossRefGoogle Scholar
  9. Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shoroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237CrossRefGoogle Scholar
  10. Nanda K K, Kruis F E and Fissan H 2002 Phys. Rev. Lett. 89 256103Google Scholar
  11. Ohya Y, Niwa T, Ban T and Takahashi Y 2001 Jpn J. Appl. Phys. 40 29CrossRefGoogle Scholar
  12. Raju A R and Rao C N R 1991 Sensor Actuator B3 305CrossRefGoogle Scholar
  13. Singh P, Chawla A K, Kaur D and Chandra R 2007 Mater. Lett. 61 2050CrossRefGoogle Scholar
  14. Srikant V and Clarke D R 1998 J. Appl. Phys. 83 5447CrossRefGoogle Scholar
  15. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287CrossRefGoogle Scholar
  16. Tauc J (ed.) 1974 Amorphous and liquid semiconductor (New York: Plenum Press)Google Scholar
  17. Wang J L 2004 J. Phys. Condens. Matter 16 R829CrossRefGoogle Scholar
  18. Wood V E and Austin A E 1975 Magnetoelectric interaction phenomena in crystals (London: Gordon and Breach)Google Scholar
  19. Zu P, Tang Z K, Wong G K L, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1997 Solid State Commun. 103 459CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • Preetam Singh
    • 1
  • Ashvani Kumar
    • 1
  • Ajay Kaushal
    • 1
  • Davinder Kaur
    • 1
  • Ashish Pandey
    • 1
    • 2
  • R. N. Goyal
    • 1
    • 2
  1. 1.Department of Physics and Centre of NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Chemistry and Centre of NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations