Advertisement

Bulletin of Materials Science

, Volume 30, Issue 5, pp 497–502 | Cite as

Conductivity studies of lithium zinc silicate glasses with varying lithium contents

  • S. K. DeshpandeEmail author
  • V. K. Shrikhande
  • M. S. Jogad
  • P. S. Goyal
  • G. P. Kothiyal
Article

Abstract

The electrical conductivity of lithium zinc silicate (LZS) glasses with composition, (SiO2)0.527 (Na2O)0.054(B2O3)0.05(P2O5)0.029(ZnO)0.34−x (Li2O) x (x = 0.05, 0.08, 0.11, 0.18, 0.21, 0.24 and 0.27), was studied as a function of frequency in the range 100 Hz–15 MHz, over a temperature range from 546–637 K. The a.c. conductivity is found to obey Jonscher’s relation. The d.c. conductivity (σ d.c.) and the hopping frequency (ω h), inferred from the a.c. conductivity data, exhibit Arrhenius-type behaviour with temperature. The electrical modulus spectra show a single peak, indicating a single electrical relaxation time, τ, which also exhibits Arrhenius-type behaviour. Values of activation energy derived from σ d.c., ω h and τ are almost equal within the experimental error. It is seen that σ d.c. and ω h increase systematically with Li2O content up to 21 mol% and then decrease for higher Li2O content, indicating a mixed alkali effect caused by mobile Li+ and Na+ ions. The scaling behaviour of the modulus suggests that the relaxation process is independent of temperature but depends upon Li+ concentration.

Keywords

Ionic conductivity glasses electrical modulus dielectric relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond D P, Duncan G K and West A R 1993 Solid State Ionics 8 159CrossRefGoogle Scholar
  2. Angell C A 1983 Solid State Ionics 9–10 3CrossRefGoogle Scholar
  3. Balaya P, Shrikhande V K, Kothiyal G P and Goyal P S 2004 Curr. Sci. 86 553Google Scholar
  4. Bhat Harish M, Kandavel M, Ganguli Munia and Rao K J 2004 Bull. Mater. Sci. 27 189CrossRefGoogle Scholar
  5. Day D E 1976 J. Non-Cryst. Solids 21 343CrossRefGoogle Scholar
  6. El-Egili K 1996 J. Phys.: Condens. Matter 8 3419CrossRefGoogle Scholar
  7. Ghosh S and Ghosh A 2002 J. Phys.: Condens. Matter 14 2531Google Scholar
  8. Ingram M D 1987 Phys. Chem. Glasses 28 215Google Scholar
  9. Isard J O 1969 J. Non-Cryst. Solids 1 235CrossRefGoogle Scholar
  10. Kremer F and Rozanski S A 2003 Broadband dielectric spectroscopy (eds) F Kremer and A Schonhals (Berlin: Springer Verlag) Ch. 12Google Scholar
  11. Macedo P B, Moynihan C T and Bose R 1972 Phys. Chem. Glasses 13 171Google Scholar
  12. McMillan P W 1979 Glass ceramics (London: Academic Press) 2nd ednGoogle Scholar
  13. Meikhail M S, Gohar I A and Megahed A A 1993 J. Phys. D: Appl. Phys. 26 1125CrossRefGoogle Scholar
  14. Ngai K L, Mundy J N, Jain H, Kannert O and Balzer-Jollenbeck G 1989 Phys. Rev. B39 6169Google Scholar
  15. Pan A and Ghosh A 1999 Phys. Rev. B60 3224Google Scholar
  16. Sharma Indrajit B, Goswami Madhumita, Sengupta P, Shrikhande V K, Kale G B and Kothiyal G P 2004 Mater. Letts 58 2423CrossRefGoogle Scholar
  17. Shrikhande V K, Mirza T, Sawant B B, Sinha A K and Kothiyal G P 1998 Bull. Mater. Sci. 21 493Google Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • S. K. Deshpande
    • 1
    Email author
  • V. K. Shrikhande
    • 1
    • 2
  • M. S. Jogad
    • 1
    • 3
  • P. S. Goyal
    • 1
  • G. P. Kothiyal
    • 1
    • 2
  1. 1.UGC-DAE Consortium for Scientific ResearchMumbai CentreMumbaiIndia
  2. 2.Technical Physics & Prototype Engineering DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.S.B. College of ScienceGulbargaIndia

Personalised recommendations