Carbon nanotube reinforced polymer composites—A state of the art



Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or completely new set of physical properties due to the addition of CNTs. However, the physics of interactions between CNT and its surrounding matrix material in such nano-composites has yet to be elucidated and methods for determining the parameters controlling interfacial characteristics such as interfacial shear stress, is still challenging. An improvement of the physical properties of polymer nanocomposites, based on carbon nanotubes (CNTs), is addicted to a good dispersion and strong interactions between the matrix and the filler.


Polymer carbon nanotube nanocomposite functionalization dispersion 


  1. Ajayan P M, Stephan O, Colliex C and Trauth D 1994 Science 265 1212CrossRefGoogle Scholar
  2. Allaoui A, Bai S, Cheng H M and Bai J B 2002 Composite Sci. & Technol. 62 1993CrossRefGoogle Scholar
  3. Andrew Rodney, Jacques David, Qian Dali and Rantell Terry 2002 Acc. Chem. Res. 35 1008CrossRefGoogle Scholar
  4. Baughman Ray H, Zakhidov Anvar A and Heer Walt A de 2002 Science 297 787CrossRefGoogle Scholar
  5. Cai H, Yan Fengyuan and Xue Qunji 2004 Mater. Sci. & Engg. A364 94CrossRefGoogle Scholar
  6. Cai L, Tabata H and Kawai T 2000 Appl. Phys. Lett. 77 3105CrossRefGoogle Scholar
  7. Cooper C A, Young R J and Halsall M 2001 Composites A32 401Google Scholar
  8. Cui S, Canet R, Derre A, Couzi M and Delhaes P 2003 Carbon 41 797CrossRefGoogle Scholar
  9. Fiege G B M, Altes A, Heiderhoff R and Balk L J 1999 J. Phys. D32 L13Google Scholar
  10. Frankland S J V, Caglar A, Brenner D W and Griebel M 2002 J. Phys. Chem. B106 3046Google Scholar
  11. Gojny F H, Nastalczyk J, Roslanic Z and Schulte K 2003 Chem. Phys. Lett. 370 820CrossRefGoogle Scholar
  12. Gojny F H, Wichmann M H G, Köpke U, Fiedler B and Schulte K 2004 Composites Sci. Technol. 64 2363CrossRefGoogle Scholar
  13. Gomes S, Trannoy N and Grossel P 1999 Meas. Sci. Technol. 10 805CrossRefGoogle Scholar
  14. Grimes C A, Mungle C, Kouzoudis D, Fang S and Eklund P C 2000 Chem. Phys. Lett. 319 460CrossRefGoogle Scholar
  15. Grimes C A, Dickey E C, Mungle C, Ong K G and Qian D 2001 J. Appl. Phys. 90 4134CrossRefGoogle Scholar
  16. Hersam M C, Hoole A C F, O’shea S J and Welland M E 1998 Appl. Phys. Lett. 72 915CrossRefGoogle Scholar
  17. Hill D E, Lin Y, Rao A M, Allard L F and Sun Y P 2002 Macromolecules 35 9466CrossRefGoogle Scholar
  18. Ishikawa H, Fudetani S and Hirohashi M 2001 Appl. Surf. Sci. 178 56CrossRefGoogle Scholar
  19. Khare Rupesh and Bose Suryasarathi 2005 J. Miner. & Mater. Charact. & Eng. 4 31Google Scholar
  20. Kracke B and Damaschke B 2000 Appl. Phys. Lett. 77 361CrossRefGoogle Scholar
  21. Laurie O and Wagner H D 1998a J. Mater. Res. 13 2418CrossRefGoogle Scholar
  22. Laurie O and Wagner H D 1998b Appl. Phys. Lett. 73 3527CrossRefGoogle Scholar
  23. Laurie O, Cox D E and Wagner H D 1998 Appl. Phys. Lett. 81 1638CrossRefGoogle Scholar
  24. Laurie O, Wagner H D, Zhang Y and Lijima S 1999 Adv. Mater. 11 931CrossRefGoogle Scholar
  25. Liu Luqi and Wagner H D 2005 Composites Sci. & Technol. 65 1861CrossRefGoogle Scholar
  26. Lu K L, Lago M, Chen Y K, Green M L H, Harris P J F and Tsang S C 1996 Carbon 34 814CrossRefGoogle Scholar
  27. McCarthy B, Coleman J N, Curran S A, Dalton A B, Davey A P and Konya Z 2000 J. Mater. Sci. Lett. 19 2239CrossRefGoogle Scholar
  28. Overney G, Zhong W and Tomanek D Z 1993a Z. Phys. D27 93Google Scholar
  29. Overney G, Zhong W and Tomanek D Z 1993b Phys. Lett. 370 820Google Scholar
  30. Ruiz Facundo, Sun W D, Pollak Fred H and Venkatraman Chandra 1998 Appl. Phys. Lett. 73 1802CrossRefGoogle Scholar
  31. Sandler J K W, Shaffer M S P, Prasse T, Bauhofer W, Schulten K and Windle A H 1999 Polymer 40 5967CrossRefGoogle Scholar
  32. Schadler L S, Giannaris S C and Ajayan P M 1998 Appl. Phys. Lett. 73 3842CrossRefGoogle Scholar
  33. Schmid C F and Klingenberg D J 2000 Phys. Rev. Lett. 84 290CrossRefGoogle Scholar
  34. Schulte K, Gojny F H, Fielder B, Sandler J and Bauhofer W 2005 Carbon nanotube reinforced polymers. A state of the art—review, in Polymer-composites—from nano to macro scale (eds) K Friedrich et al pp 3–23Google Scholar
  35. Seo Min-Kang and Park Soo-Jin 2004 Chem. Phys. Lett. 395 44CrossRefGoogle Scholar
  36. Shaffer M S P, Fan X and Windle A H 1998 Carbon 36 1603CrossRefGoogle Scholar
  37. Siochia Emilie J, Working Dennis C, Park Cheol, Lilleheia Peter T, Rouse Jason H, Topping Crystal C, Bhattacharyya A R and Kumar Satish 2004 Composites B35 439Google Scholar
  38. Song Young Seok and Youn Jae Ryoun 2004 e-Polymers No. 080 1Google Scholar
  39. Treacy M M J, Ebbesen T W and Gibson J M 1996 Nature (London) 381 678CrossRefGoogle Scholar
  40. Walters D A, Ericson L M, Casavant M J, Liu J, Colbert D T, Smith K A and Smalley R E 1999 Appl. Phys. Lett. 74 3803CrossRefGoogle Scholar
  41. Wong E W, Sheehan P E and Lieber C M 1997 Science 277 1971CrossRefGoogle Scholar
  42. Wong M, Paramsothy M, Xu X J, Ren Y, Li S and Liao K 2003 Polymer 44 7757CrossRefGoogle Scholar
  43. Zhu J, Kim J D, Peng H, Margrave J L, Khabashesku V N and Barrera E V 2003 Nanoletters 3 1107Google Scholar
  44. Zhu J, Peng H, Rodriguez-Macias F, Margrave J L, Khabashesku V N and Imam A M 2004 Adv. Funct. Mater. 14 643CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyRourkelaIndia
  2. 2.Metallurgical and Materials Engineering DepartmentNational Institute of TechnologyRourkelaIndia

Personalised recommendations