Bulletin of Materials Science

, Volume 30, Issue 1, pp 37–41

Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon

  • A K Subramani
  • K Byrappa
  • S Ananda
  • K M Lokanatha Rai
  • C Ranganathaiah
  • M Yoshimura
Article

Abstract

The photocatalytic degradation of indigo carmine dye was studied using hydrothermally prepared TiO2 impregnated activated carbon (TiO2: AC). A comparison between the degradation of the indigo carmine dye using commercial TiO2 and TiO2: AC revealed the efficiency of the title compound. The degradation reaction was optimized with respect to the dye concentration and catalyst amount. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal. The active compound like TiO2 was impregnated onto the activated carbon surface under mild hydrothermal conditions (<250°C, P ∼ 40 bars). The impregnated activated carbon samples were characterized using powder X-ray diffraction (XRD) and scanning electron microscope (SEM).

Keywords

Hydrothermal preparation photocatalysis indigo carmine activated carbon TiO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baetz R L and Iangphasuk M 1997 Chemosphere 35 585CrossRefGoogle Scholar
  2. Byrappa K, Lokanatha Rai K M and Yoshimura M 2000 Environ. Tech. 21 1085CrossRefGoogle Scholar
  3. Byrappa K, Subramani A K, Ananda S, Lokanatha Rai K M, Dinesh R and Yoshimura M 2006a Bull. Mater. Sci. 29 433CrossRefGoogle Scholar
  4. Byrappa K, Subramani A K, Ananda S, Lokanatha Rai K M, Sunitha M H, Basavalingu B and Soga K 2006b J. Mater. Sci. 41 1355CrossRefGoogle Scholar
  5. Carlos Gouvea A K, Wypych F, Sandra Mores G, Duran N, Nagata N and Peralta-Zamona P 2000 Chemosphere 40 433CrossRefGoogle Scholar
  6. Crittender J C, Rominder Suri P S, David Perram L and Hand D W 1997 Wat. Res. 1 411CrossRefGoogle Scholar
  7. Ding Z, Lu G Q and Green Field P F 2000 J. Colloid Interf. Sci. 232 1CrossRefGoogle Scholar
  8. Di Paola A, Garcia-Lopez E, Keda S I, Marchi G and Ohtani B 2002 Catalysis Today 75 87CrossRefGoogle Scholar
  9. Ferraz M C M, Maser S and Jonhaeuser M 1999 Fuel 1567Google Scholar
  10. Matos J, Laine J and Hermann J M 1998 Appl. Catal. B: Environ. 18 281CrossRefGoogle Scholar
  11. Neppolian B, Choi H C, Sakthivel S, Arabindoo B and Murugesan V 2002 J. Hazard. Mater. 89 303CrossRefGoogle Scholar
  12. Panduranga A, Kamala S, Uma S, Palanichamy M and Murgesa V 2001 Indian J. Chem. Technol. 8 96Google Scholar
  13. Poulios I and Aetopoulon I 1999 Environ. Tech. 20 79CrossRefGoogle Scholar
  14. Steven L M 1973 Handbook of photochemistry (New York: Marcel Dekker) pp 124–125Google Scholar
  15. Subramani A K, Byrappa K, Kumaraswamy G N, Ravikumar H B, Ranganathaiah C, Lokanatha Rai K M, Ananda S and Yoshimura M 2007 Mater. Letts (submitted)Google Scholar
  16. Tsumura T, Kojitani N, Umemura H, Toyoda M and Inagaku M 2002 Appl. Surf. Sci. 196 492CrossRefGoogle Scholar
  17. Wang Y 2000 Wat. Res. 34 990CrossRefGoogle Scholar
  18. Yamashita H et al 2000 Catalysis Today 63 63CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • A K Subramani
    • 1
  • K Byrappa
    • 1
  • S Ananda
    • 1
    • 2
  • K M Lokanatha Rai
    • 1
    • 2
  • C Ranganathaiah
    • 1
    • 3
  • M Yoshimura
    • 1
    • 4
  1. 1.Department of GeologyUniversity of MysoreMysoreIndia
  2. 2.Department of ChemistryUniversity of MysoreMysoreIndia
  3. 3.Department of PhysicsUniversity of MysoreMysoreIndia
  4. 4.Materials Structures Laboratory, Centre for Materials DesignTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations