Advertisement

Molecular Biotechnology

, Volume 61, Issue 7, pp 477–488 | Cite as

A Novel Mini Protein Design of Haloalkane Dehalogenase

  • Nurul Hazwani Daud
  • Thean Chor Leow
  • Siti Nurbaya Oslan
  • Abu Bakar SallehEmail author
Original paper
  • 155 Downloads

Abstract

The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.

Keywords

Haloalkane dehalogenase Haloalkane contaminant Mini protein Stability Bioreceptor 

Notes

Acknowledgements

We would like to thank Geran Universiti Putra Malaysia, Geran Putra Berkumpulan (IPB) (Project Number: GP-IPB/2013/9413500) for supporting our study.

Supplementary material

12033_2019_169_MOESM1_ESM.docx (254 kb)
Supplementary material 1 (DOCX 253 KB)

References

  1. 1.
    Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. J., & Terwilliger, T. C. (1999). Haloalkane dehalogenases: Structure of a Rhodococcus Enzyme. Biochemistry, 38, 16105–16114.CrossRefPubMedGoogle Scholar
  2. 2.
    Li, Y., Zhang, R., Du, L., Zhang, Q., & Wang, W. (2016). Catalytic mechanism of C–F bond cleavage: Insights from QM/MM analysis of fluoroacetate dehalogenase. Catalysis Science and Technology, 6, 73–80.CrossRefGoogle Scholar
  3. 3.
    Li, Y., Zhang, R., Du, L., Zhang, Q., & Wang, W. (2016). How many conformations of enzymes should be sampled for DFT/MM calculations? A case study of fluoroacetate dehalogenase. International Journal of Molecular Sciences, 17, 1372.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wang, J., Tang, X., Li, Y., Zhang, R., Zhu, L., Chen, J., Sun, Y., Zhang, Q., & Wanga, W. (2018). Computational evidence for the degradation mechanism of haloalkane dehalogenase LinB and mutants of Leu248 to 1-chlorobutane. Physical Chemistry Chemical Physics, 20(31), 20540–20547.CrossRefPubMedGoogle Scholar
  5. 5.
    Tang, X., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2017). Enantioselectivity of haloalkane dehalogenase LinB on the degradation of 1,2-dichloropropane: A QM/MM study. Bioorganic Chemistry, 73, 16–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Chan, W. Y., Wong, M., Guthrie, J., Savchenko, A. V., Yakunin, A. F., Pai, E. F., & Edwards, E. A. (2010). Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microbial Biotechnology, 3, 107–120.CrossRefPubMedGoogle Scholar
  7. 7.
    Jesenska, A., Monincova, M., Koudelakova, T., Hasan, K., Chaloupkova, R., Prokop, Z., Geerlof, A., & Damborsky, J. (2009). Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, representatives of a novel subfamily. Applied and Environmental Microbiology, 75, 5157–5160.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jesenska, A., Pavlova, M., Strouhal, M., Chaloupkova, R., Tesinska, I., Monincova, M., Prokop, Z., Bartos, M., Pavlik, I., Rychlik, I., Möbius, P., Nagata, Y., & Damborsky, J. (2005). Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Applied and Environmental Microbiology, 71, 6736–6745.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bidmanova, S., Damborsky, J., & Prokop, Z. (2013). Immobilization of haloalkane dehalogenase LinB from Sphingobium japonicum UT26 for biotechnological applications. Journal of Biocatalysis and Biotransformation, 2(1), 2.Google Scholar
  10. 10.
    Bhalla, N., Jolly, P., Formisano, N., & Estrela, P. (2016). Introduction to biosensors. Essays in Biochemistry, 60(1), 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang, F., Xiao, J., Pan, L., Yang, M., Zhang, G., Jin, S., & Yu, J. (2008). A systematic survey of mini-proteins in bacteria and archaea. PLoS ONE, 3(12).Google Scholar
  12. 12.
    Khoury, G. A., Smadbeck, J., Kieslich, C. A., & Floudas, C. A. (2013). Protein folding and de novo protein design for biotechnological applications. Trends in Biotechnology, 32(2), 99–109.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kuah, E., Toh, S., Yee, J., Ma, Q., & Gao, Z. (2016). Enzyme mimics: Advances and applications. Chemistry A Europian Journal, 22(25), 8404–8430.CrossRefGoogle Scholar
  14. 14.
    Lassila, J. K., Privett, H. K., Allen, B. D., & Mayo, S. L. (2006). Combinatorial methods for small molecule placement in computational enzyme design. Proceedings of National Academy of Sciences USA, 103(45), 16710–16715.CrossRefGoogle Scholar
  15. 15.
    Holtje, H. D., Sippl, W., Rognan, D., & Folkers, G. (2008). Molecular modeling: Basic principles and applications. Weinheim: Wiley.Google Scholar
  16. 16.
    Hansen, L. D., Transtrum, M. K., Quinn, C., & Demarse, N. (2016). Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry. Biochimica et Biophysica Acta, 1860, 957–966.CrossRefPubMedGoogle Scholar
  17. 17.
    Polticelli, F., Raybaudi-Massilia, G., & Ascenzi, P. (2001). Structural determinants of mini-protein stability. Biochemistry and Molecular Biology Education, 29, 16–20.CrossRefGoogle Scholar
  18. 18.
    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular System Biology, 7(1), 539.CrossRefGoogle Scholar
  19. 19.
    Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins, 57, 678–683.CrossRefPubMedGoogle Scholar
  20. 20.
    Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Conformation of polypeptides and proteins. Journal of Molecular Biology, 7, 95–99.CrossRefPubMedGoogle Scholar
  21. 21.
    Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor laboratory press.Google Scholar
  23. 23.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  24. 24.
    Iwasaki, I., Utsumi, S., & Ozawa, T. (1952). New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bulletin of the Chemical Society of Japan, 25, 226.CrossRefGoogle Scholar
  25. 25.
    Marvanova, S., Nagata, Y., Wimmerova, M., Sykorova, J., Hynkova, K., & Damborsky, J. (2001). Biochemical characterization of broad- specificity enzymes using multivariate experimental design and a colorimetric microplate assay: Characterization of the haloalkane dehalogenase mutants. Journal of Microbiological Methods, 44, 149–157.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang, J. T., Wu, C. S., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 69–208.Google Scholar
  27. 27.
    Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A., Jarkovsky, J., & Damborsky, J. (2011). Substrate specificity of haloalkane dehalogenases. Biochemical Journal, 435(2), 345–354.CrossRefPubMedGoogle Scholar
  28. 28.
    Lau, E. Y., Kahn, K., Bash, P. A., & Bruice, T. C. (2000). The importance of reactant positioning in enzyme catalysis: A hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase. Proceedings of National Academy of Sciences USA, 97(18), 9937–9942.CrossRefGoogle Scholar
  29. 29.
    Laskowski, R., Macarthur, M., Moss, D., & Thornton, J. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.CrossRefGoogle Scholar
  30. 30.
    Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2001). PROCHECK: Validation of protein structure coordinates. In M. G. Rossmann & E. Arnold (Eds.), International Tables of Crystallography (F: crystallography of biological macro-molecules, pp. 722–725). Dordrecht: Kluwer.Google Scholar
  31. 31.
    Bisignano, P., & Moran, O. (2010). Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR–nucleotide binding domain 1. Biochimie, 92, 51–57.CrossRefPubMedGoogle Scholar
  32. 32.
    Schymkowitz, J. W. H., Rousseau, F., Martin, I. C., Ferkinghoff-Borg, J., Stricher, F., & Serrano, L. (2005). Prediction of water and metal binding sites and their affinities by using the fold-X force field. Proceedings of National Academy of Sciences USA, 102(29), 10147–10152.CrossRefGoogle Scholar
  33. 33.
    Jeffery, C. J., Gloss, L. M., Petsko, G. A., & Ringe, D. (2000). The role of residues outside the active site: Structural basis for function of C191 mutants of Escherichia coli aspartate amino transferase. Protein Enggineering, 13(2), 105–112.CrossRefGoogle Scholar
  34. 34.
    Klepeis, J. L., Lindorff-larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120–127.CrossRefPubMedGoogle Scholar
  35. 35.
    Nosoh, Y., & Sekiguchi, T. (1991). Protein stability and stabilization through protein engineering. New York: Ellis Horwood Limited.Google Scholar
  36. 36.
    Kukol, A. (2008). Molecular modeling of proteins. United States: Humana Press. Springer science.CrossRefGoogle Scholar
  37. 37.
    Peerayeh, S. N., Atoofi, J., Hoseinkhani, S., & Farshchian, M. (2009). Cloning and expression of Helicobacter pylori HpaA gene. Yakhteh Medical Journal, 11(3), 273–276.Google Scholar
  38. 38.
    Gehret, J. J., Gu, L., Geders, T. W., Brown, W. C., Gerwick, L., Gerwick, W. H., Sherman, D. H., & Smith, J. L. (2011). Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Science, 21, 239–248.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kusumawati, A., Santoso, A., & Radji, M. (2013). Soluble expression of recombinant human interferon alpha 2a fusion protein in Escherichia coli. International Journal of Pharmaceutical Science and Health Care, 2(3), 42–49.Google Scholar
  40. 40.
    Damian, L. (2013). Isothermal titration calorimetry for studying protein–ligand interactions. In M. Williams & T. Daviter (Eds.), Protein-ligand interactions: Methods in molecular biology (Methods and Protocols) (p. 1008). Totowa: Humana Press.Google Scholar
  41. 41.
    Duff, M. R., Grubbs, J., & Howell, E. E. (2011). Isothermal titration calorimetry for measuring macromolecule-ligand affinity. Journal of Visualized Experiments, 55, 2796.Google Scholar
  42. 42.
    Benjwal, S., Verma, S., Rohm, K.-H., & Gursky, O. (2006). Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Science, 15(3), 635–639.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Greenfield, N. J. (2009). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nurul Hazwani Daud
    • 1
    • 2
  • Thean Chor Leow
    • 2
    • 3
  • Siti Nurbaya Oslan
    • 1
    • 2
  • Abu Bakar Salleh
    • 2
    Email author
  1. 1.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Enzyme and Microbial Research Centre, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations