Molecular Biotechnology

, Volume 61, Issue 5, pp 332–344 | Cite as

Isopentenyl Transferase (IPT) Gene Transfer to Perennial Ryegrass Through Sonication-Assisted Agrobacterium-Mediated Transformation (SAAT), Vacuum and Heat Treatment

  • Somayeh Esmaeili
  • Hassan SalehiEmail author
  • Morteza Khosh-Khui
  • Ali Niazi
  • Masoud Tohidfar
  • Farzaneh Aram
Original paper


The successful introduction of isopentenyl transferase (IPT) gene into perennial ryegrass, cultivars Numan and Grassland using Agrobacterium tumefaciens via three explants (callus, seed and meristem tip) under three individual experiment was evaluated. In the first experiment, the calli were inoculated with LBA4404 Agrobacterium strain under vacuum, heat and in combination of both at 42 °C for 5 min followed by vacuum treatment (390 mm Hg pressure) for 15 min. Sonication-assisted Agrobacterium-mediated transformation (SAAT) was applied for seed and meristem tip transformation of perennial ryegrass for the first time. Results showed positive effects of heat treatment on transformation efficiency during Agro-infection in both cultivars. However, heat shock treatment was more effective in ʻGrasslandʼ than ʻNumanʼ (14.2% vs 9.2%). In addition, high transformation efficiency of about 46.65% and 29.15% was observed using meristem tip explants of ʻGrasslandʼ and ʻNumanʼ based on IPT and RD29A positive PCR results, respectively. Seed transformation efficiency in ʻGrasslandʼ and ʻNumanʼ under SAAT method reached to 37.5% and 16.65%, respectively. Results of these experiments revealed that LBA4404 strain was more efficient than GV3101 in transformation of both perennial ryegrass cultivars. The DNA-blot analysis confirmed that a single T-DNA copy of the IPT gene was integrated into the genomic DNA of the positive transgenic T0 plants which obtained from callus and meristem tip explants of ʻGrasslandʼ after heat and SAAT treatment, respectively. Because monocots are not the host of Agrobacterium tumefaciens, this novel protocol can be used in further experiments on genetic transformation of perennial ryegrass cultivars.


Efficiency Infiltration Lolium perenne L. Meristem Seed Sonication 



Funding was provided by Shiraz University.


  1. 1.
    Abid, M., Ahmad, N., Ali, A., Chaudhry, M. A., & Hussain, J. (2007). Influence of soil–applied boron on yield, fiber quality and leaf boron contents of cotton (Gossypium hirsutum L.). Journal of Agriculture and Social Sciences, 3, 7–10.CrossRefGoogle Scholar
  2. 2.
    Alam, M. M., Naeem, M., Khan, M. M. A., & Uddin, M. (2017) Vincristine and vinblastine anticancer catharanthus alkaloids: Pharmacological applications and strategies for yield improvement. In: Catharanthus roseus (pp. 277–307). Springer.Google Scholar
  3. 3.
    Altpeter, F., Xu, J., & Ahmed, S. (2000). Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars. Molecular Breeding, 6, 519–528.CrossRefGoogle Scholar
  4. 4.
    Bai, Y., & Qu, R. (2001). Genetic transformation of elite turf-type cultivars of tall fescue. International Turfgrass Society Research Journal, 9, 129–133.Google Scholar
  5. 5.
    Bajaj, S., & Mohanty, A. (2005). Recent advances in rice biotechnology—Towards genetically superior transgenic rice. Plant Biotechnol J, 3, 275–307.CrossRefGoogle Scholar
  6. 6.
    Bajaj, S., Ran, Y., Phillips, J., Kularajathevan, G., Pal, S., Cohen, D., Elborough, K., & Puthigae, S. (2006). A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Reports, 25, 651–659.CrossRefGoogle Scholar
  7. 7.
    Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana tabacum L. Emirates. Journal of Food and Agriculture, 26, 259.Google Scholar
  8. 8.
    Bakshi, S., Sadhukhan, A., Mishra, S., & Sahoo, L. (2011). Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Reports, 30, 2281–2292.CrossRefGoogle Scholar
  9. 9.
    Beranová, M., Rakouský, S., Vávrová, Z., & Skalický, T. (2008). Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell, Tissue and Organ Culture, 94, 253–259.CrossRefGoogle Scholar
  10. 10.
    Cao, M., Huang, J., He, Y., Liu, S., Wang, C., Jiang, W., & Wei, Z. (2006) Transformation of recalcitrant turfgrass cultivars through improvement of tissue culture and selection regime. Plant Cell, Tissue and Organ Culture, 85, 307–316.CrossRefGoogle Scholar
  11. 11.
    Chai, M.-L., Senthil, K.-K., & Kim, D.-H. (2004). Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture, 77, 165–171.CrossRefGoogle Scholar
  12. 12.
    Cheng, M., Lowe, B. A., Michael Spencer, T., Ye, X., & Armstrong, C. L. (2004). Invited review: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology, 40, 31–45.CrossRefGoogle Scholar
  13. 13.
    Clement, W. K. F., Lai, K. S., Wong, M. Y., & Maziah, M. (2016). Heat and hydrolytic enzymes treatment improved the Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.). Plant Cell, Tissue and Organ Culture, 125, 183–190.CrossRefGoogle Scholar
  14. 14.
    Dalton, S., Bettany, A., Timms, E., & Morris, P. (1995). The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Science, 108, 63–70.CrossRefGoogle Scholar
  15. 15.
    Dalton, S., Bettany, A., Timms, E., & Morris, P. (1998). Transgenic plants of Lolium multiflorum. Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Science, 132, 31–43.CrossRefGoogle Scholar
  16. 16.
    Dalton, S., Bettany, A., Timms, E., & Morris, P. (1999). Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Reports, 18, 721–726.CrossRefGoogle Scholar
  17. 17.
    Dutta, I., Kottackal, M., Tumimbang, E., Tajima, H., Zaid, A., & Blumwald, E. (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert shrub Leptadenia pyrotechnica. Plant Cell, Tissue and Organ Culture, 112, 289–301.CrossRefGoogle Scholar
  18. 18.
    Esmaeili, S., Salehi, H., & Khosh-Khui, M. (2018). Direct and indirect in vitro plant regeneration of two commercial cultivars of perennial ryegrass. Advances in Horticultural Science, 32, 273–280.Google Scholar
  19. 19.
    Feldmann, K. A., & Marks, M. D. (1987). Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Molecular Genetics and Genomics, 208, 1–9.CrossRefGoogle Scholar
  20. 20.
    Ge, Y., Cheng, X., Hopkins, A., & Wang, Z.-Y. (2007). Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation. Plant Cell Reports, 26, 783.CrossRefGoogle Scholar
  21. 21.
    Gurel, S., Gurel, E., Kaur, R., Wong, J., Meng, L., Tan, H.-Q., & Lemaux, P. G. (2009). Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports, 28, 429–444.CrossRefGoogle Scholar
  22. 22.
    Ha, C. D., Lemaux, P. G., & Cho, M.-J. (2001). Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cellular & Developmental Biology - Plant, 37, 6–11.CrossRefGoogle Scholar
  23. 23.
    Han, N., Chen, D., Bian, H.-W., Deng, M.-J., & Zhu, M.-Y. (2005). Production of transgenic creeping bentgrass Agrostis stolonifera var. palustris plants by Agrobacterium tumefaciens-mediated transformation using hygromycin selection. Plant Cell, Tissue and Organ Culture, 81, 131–138.CrossRefGoogle Scholar
  24. 24.
    Hiei, Y., Ishida, Y., Kasaoka, K., & Komari, T. (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 87, 233–243.CrossRefGoogle Scholar
  25. 25.
    Hu, Y., Jia, W., Wang, J., Zhang, Y., Yang, L., & Lin, Z. (2005). Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Reports, 23, 705–709.CrossRefGoogle Scholar
  26. 26.
    Jha, P., Rustagi, A., Agnihotri, P. K., Kulkarni, V. M., & Bhat, V. (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell, Tissue and Organ Culture, 107, 501–512.CrossRefGoogle Scholar
  27. 27.
    Koetle, M., Baskaran, P., Finnie, J., Soos, V., Balázs, E., & Van Staden, J. (2017). Optimization of transient GUS expression of Agrobacterium-mediated transformation in Dierama erectum Hilliard using sonication and Agrobacterium. South African Journal of Botany, 111, 307–312.CrossRefGoogle Scholar
  28. 28.
    Lai, E. M., Shih, H. W., Wen, S. R., Cheng, M. W., Hwang, H. H., & Chiu, S. H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Journal of Proteomics, 6, 4130–4136.CrossRefGoogle Scholar
  29. 29.
    Li, R., & Qu, R. (2011). High throughput Agrobacterium-mediated switchgrass transformation. Biomass & Bioenergy, 35, 1046–1054.CrossRefGoogle Scholar
  30. 30.
    Li, S., Zhao, D.-G., Wu, Y.-J., & Tian, X.-E. (2009). A simplified seed transformation method for obtaining transgenic Brassica napus plants. Agricultural Sciences in China, 8, 658–663.CrossRefGoogle Scholar
  31. 31.
    Liu, Z., Park, B.-J., Kanno, A., & Kameya, T. (2005). The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding, 16, 189.CrossRefGoogle Scholar
  32. 32.
    Manickavasagam, M., Subramanyam, K., Ishwarya, R., Elayaraja, D., & Ganapathi, A. (2015) Assessment of factors influencing the tissue culture-independent Agrobacterium-mediated in planta genetic transformation of okra [Abelmoschus esculentus (L.) Moench]. Plant Cell, Tissue and Organ Culture, 123, 309–320.CrossRefGoogle Scholar
  33. 33.
    Mariashibu, T. S., Subramanyam, K., Arun, M., Mayavan, S., Rajesh, M., Theboral, J., Manickavasagam, M., & Ganapathi, A. (2013). Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiologiae Plantarum, 35, 41–54.CrossRefGoogle Scholar
  34. 34.
    Mayavan, S., Jang, H.-S., Lee, M.-J., Choi, S. H., & Choi, S.-M. (2013). Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. Journal of Materials Chemistry A, 1, 3489–3494.CrossRefGoogle Scholar
  35. 35.
    Merewitz, E. B., Du, H., Yu, W., Liu, Y., Gianfagna, T., & Huang, B. (2011). Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. Journal of Experimental Botany, 63, 1315–1328.CrossRefGoogle Scholar
  36. 36.
    Merewitz, E. B., Gianfagna, T., & Huang, B. (2010). Effects of SAG12-ipt. and HSP18. 2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. Journal of the American Society for Horticultural Science, 135, 230–239.CrossRefGoogle Scholar
  37. 37.
    Merewitz, E. B., Gianfagna, T., & Huang, B. (2011). Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. Journal of Experimental Botany, 62, 5311–5333.CrossRefGoogle Scholar
  38. 38.
    Pandey, S., Patel, M. K., Mishra, A., & Jha, B. (2016). In planta transformed cumin (Cuminum cyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PLoS ONE, 11, e0159349.CrossRefGoogle Scholar
  39. 39.
    Patel, M., Dewey, R. E., & Qu, R. (2013). Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell, Tissue and Organ Culture, 114, 19–29.CrossRefGoogle Scholar
  40. 40.
    Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 9, 747–758.CrossRefGoogle Scholar
  41. 41.
    Pipatpanukul, T., Bunnag, S., Theerakulpisut, P., & Kosittrakul, M. (2004). Transformation of indica rice (Oryza sativa L.) cv. RD6 mediated by Agrobacterium tumefaciens. Transformation, 26, 2.Google Scholar
  42. 42.
    Ran, Y., Patron, N., Yu, Q., Georges, S., Mason, J., & Spangenberg, G. (2014). Agrobacterium-mediated transformation of Lolium rigidum Gaud. Plant Cell, Tissue and Organ Culture, 118, 67–75.CrossRefGoogle Scholar
  43. 43.
    Ravanfar, S. A., & Aziz, M. A. (2015). Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of Broccoli (Brassica oleracea var. italica) cv. Green Marvel. Plant Biotechnology Reports, 9, 27–36.CrossRefGoogle Scholar
  44. 44.
    Sambrook, J. R., & Russel, D. (2001). DW 2001. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  45. 45.
    Santarem, E., Trick, H., Essig, J., & Finer, J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: Optimization of transient expression. Plant Cell Reports, 17, 752–759.CrossRefGoogle Scholar
  46. 46.
    Sato, H., & Takamizo, T. (2006). Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Science, 52, 95–98.CrossRefGoogle Scholar
  47. 47.
    Sivanandhan, G., Dev, G. K., Theboral, J., Selvaraj, N., Ganapathi, A., & Manickavasagam, M. (2015). Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS ONE, 10, e0124693.CrossRefGoogle Scholar
  48. 48.
    Solís, J. F., Mlejnek, P., Studená, K., & Procházka, S. (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant, Soil and Environment, 49, 255–260.CrossRefGoogle Scholar
  49. 49.
    Song, G., Walworth, A., & Hancock, J. F. (2012). Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell, Tissue and Organ Culture, 108, 445–453.CrossRefGoogle Scholar
  50. 50.
    Spangenberg, G., Wang, Z., Wu, X., Nagel, J., & Potrykus, I. (1995). Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Science, 108, 209–217.CrossRefGoogle Scholar
  51. 51.
    Trick, H., & Finer, J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports, 17, 482–488.CrossRefGoogle Scholar
  52. 52.
    Tsai, Y.-L., Wang, M.-H., Gao, C., Klüsener, S., Baron, C., Narberhaus, F., & Lai, E.-M. (2009). Small heat-shock protein HspL is induced by VirB protein (s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiology, 155, 3270–3280.CrossRefGoogle Scholar
  53. 53.
    Van Heeswijck, R., Hutchinson, J., Kaul, V., McDonald, G., & Woodward, J. (1994). The role of biotechnology in perennial grass improvement for temperate pastures. New Zealand Journal of Agricultural Research, 37, 427–438.CrossRefGoogle Scholar
  54. 54.
    Vanjildorj, E., Bae, T.-W., Riu, K.-Z., Yun, P.-Y., Park, S.-Y., Lee, C.-H., Kim, S.-Y., & Lee, H.-Y. (2006) Transgenic Agrostis mongolica Roshev. with enhanced tolerance to drought and heat stresses obtained from Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture, 87, 109–120.CrossRefGoogle Scholar
  55. 55.
    Vogel, J. P., Gu, Y. Q., Twigg, P., Lazo, G. R., Laudencia-Chingcuanco, D., Hayden, D. M., Donze, T. J., Vivian, L. A., Stamova, B., & Coleman-Derr, D. (2006). EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics, 113, 186–195.CrossRefGoogle Scholar
  56. 56.
    Wang, Z.-Y., & Ge, Y. (2005). Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). Journal of Plant Physiology, 162, 103–113.CrossRefGoogle Scholar
  57. 57.
    Wang, Z.-Y., & Ge, Y. (2006). Invited review: Recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular & Developmental Biology – Plant, 42, 1–18.CrossRefGoogle Scholar
  58. 58.
    Wu, Y.-Y., Chen, Q.-J., Chen, M., Chen, J., & Wang, X.-C. (2005). Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Science, 169, 65–73.CrossRefGoogle Scholar
  59. 59.
    Wu, Y., Chen, Q., Cui, X., Chen, H., Chen, J., & Wang, X. (2007). Efficient regeneration and Agrobacterium-mediated stable transformation of perennial ryegrass. Russian Journal of Plant Physiology, 54, 524–529.CrossRefGoogle Scholar
  60. 60.
    Xu, C., & Huang, B. (2010). Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress toleranceJournal. of Plant Physiology, 167, 1477–1485.CrossRefGoogle Scholar
  61. 61.
    Zhang, K., Wang, J., Hu, X., Yang, A., & Zhang, J. (2010) Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell, Tissue and Organ Culture, 102, 135–143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Horticultural Science, School of AgricultureShiraz UniversityShirazIran
  2. 2.Institute of BiotechnologyShiraz UniversityShirazIran
  3. 3.Department of Plant Sciences and BiotechnologyShahid Beheshti UniversityTehranIran

Personalised recommendations