Advertisement

Molecular Biotechnology

, Volume 61, Issue 3, pp 221–229 | Cite as

Building Bridges Between Structural and Network-Based Systems Biology

  • Christos T. ChasapisEmail author
Review
  • 77 Downloads

Abstract

The integration of structural and network-based systems biology is paramount for the improved understanding of how the proteins interact to modulate the behavior of complex biological systems. This review presents the current literature on the computational studies that combine these two scientific fields focusing on two main approaches: network-based analysis of the structure and dynamics of proteins and the in silico reconstruction of protein–protein interaction (PPI) networks or expansion of existed protein interactomes driven by structural annotations. Last, to enrich the current knowledge of the topological properties of the protein structure networks and evaluate the capacity of the public structural annotations of protein domains to predict novel PPIs, further computational analyses, missing so far from the literature, were performed.

Keywords

Structural biology Systems biology PPI network Functional dynamics Pfam domains 

Notes

References

  1. 1.
    Aloy, P., & Russell, R. B. (2006). Structural systems biology: Modelling protein interactions. Nature Reviews Molecular Cell Biology, 7(3), 188–197.  https://doi.org/10.1038/nrm1859.Google Scholar
  2. 2.
    Amaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11149–11152.  https://doi.org/10.1073/pnas.200327197.Google Scholar
  3. 3.
    Amitai, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., & Pietrokovski, S. (2004). Network analysis of protein structures identifies functional residues. Journal of Molecular Biology, 344(4), 1135–1146.  https://doi.org/10.1016/j.jmb.2004.10.055.Google Scholar
  4. 4.
    Andreini, C., Banci, L., Bertini, I., Elmi, S., & Rosato, A. (2007). Non-heme iron through the three domains of life. Proteins: Structure, Function, and Bioinformatics, 67(2), 317–324.  https://doi.org/10.1002/prot.21324.Google Scholar
  5. 5.
    Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2006). Zinc through the three domains of life. Journal of Proteome Research, 5(11), 3173–3178.  https://doi.org/10.1021/pr0603699.Google Scholar
  6. 6.
    Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2008). Occurrence of copper proteins through the three domains of life: A bioinformatic approach. Journal of Proteome Research, 7(1), 209–216.  https://doi.org/10.1021/pr070480u.Google Scholar
  7. 7.
    Atilgan, A. R., Akan, P., & Baysal, C. (2004). Small-world communication of residues and significance for protein dynamics. Biophysical Journal, 86(1 Pt 1), 85–91.  https://doi.org/10.1016/S0006-3495(04)74086-2.Google Scholar
  8. 8.
    Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O., & Bahar, I. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophysical Journal, 80(1), 505–515.  https://doi.org/10.1016/s0006-3495(01)76033-x.Google Scholar
  9. 9.
    Atilgan, A. R., Turgut, D., & Atilgan, C. (2007). Screened nonbonded interactions in native proteins manipulate optimal paths for robust residue communication. Biophysical Journal, 92(9), 3052–3062.  https://doi.org/10.1529/biophysj.106.099440.Google Scholar
  10. 10.
    Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.  https://doi.org/10.1038/nrg1272.Google Scholar
  11. 11.
    Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S.,…, Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(Database issue), D138–D141.  https://doi.org/10.1093/nar/gkh121.Google Scholar
  12. 12.
    Beltrao, P., Kiel, C., & Serrano, L. (2007). Structures in systems biology. Current Opinion in Structural Biology, 17(3), 378–384.  https://doi.org/10.1016/j.sbi.2007.05.005.Google Scholar
  13. 13.
    Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480.  https://doi.org/10.1038/s41598-017-09654-8.Google Scholar
  14. 14.
    Birkou, M., Chasapis, C. T., Marousis, K. D., Loutsidou, A. K., Bentrop, D., Lelli, M.,…, Spyroulias, G. A. (2017). A residue specific insight into the Arkadia E3 ubiquitin ligase activity and conformational plasticity. Journal of Molecular Biology, 429(15), 2373–2386.  https://doi.org/10.1016/j.jmb.2017.06.012.Google Scholar
  15. 15.
    Bode, C., Kovacs, I. A., Szalay, M. S., Palotai, R., Korcsmaros, T., & Csermely, P. (2007). Network analysis of protein dynamics. FEBS Letters, 581(15), 2776–2782.  https://doi.org/10.1016/j.febslet.2007.05.021.Google Scholar
  16. 16.
    Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120.  https://doi.org/10.1080/0022250x.1972.9989806.Google Scholar
  17. 17.
    Bonetta, L. (2010). Protein-protein interactions: Interactome under construction. Nature, 468(7325), 851–854.  https://doi.org/10.1038/468851a.Google Scholar
  18. 18.
    Carroni, M., & Saibil, H. R. (2016). Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 95, 78–85.  https://doi.org/10.1016/j.ymeth.2015.11.023.Google Scholar
  19. 19.
    Chakrabarti, P., & Janin, J. (2002). Dissecting protein-protein recognition sites. Proteins, 47(3), 334–343.Google Scholar
  20. 20.
    Chakrabarty, B., & Parekh, N. (2016). NAPS: Network analysis of protein structures. Nucleic Acids Research, 44(W1), W375–W382.  https://doi.org/10.1093/nar/gkw383.Google Scholar
  21. 21.
    Chasapis, C. T. (2018). Hierarchical core decomposition of RING structure as a method to capture novel functional residues within RING-type E3 ligases: A structural systems biology approach. Computers in Biology and Medicine, 100, 86–91.  https://doi.org/10.1016/j.compbiomed.2018.06.033.Google Scholar
  22. 22.
    Chasapis, C. T. (2018). Interactions between metal binding viral proteins and human targets as revealed by network-based bioinformatics. Journal of Inorganic Biochemistry, 186, 157–161.  https://doi.org/10.1016/j.jinorgbio.2018.06.012.Google Scholar
  23. 23.
    Chasapis, C. T. (2019). Preliminary results from structural systems biology approach in Tetrahymena thermophila reveal novel perspectives for this toxicological model. Archives of Microbiology, 201(1), 51–59.  https://doi.org/10.1007/s00203-018-1571-6.Google Scholar
  24. 24.
    Chasapis, C. T. (2018). Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types. Metallomics, 10(11), 1678–1686.  https://doi.org/10.1039/c8mt00271a.Google Scholar
  25. 25.
    Chasapis, C. T., Andreini, C., Georgiopolou, A. K., Stefanidou, M. E., & Vlamis-Gardikas, A. (2017). Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Archives of Microbiology, 199(8), 1141–1149.  https://doi.org/10.1007/s00203-017-1385-y.Google Scholar
  26. 26.
    Chasapis, C. T., Kandias, N. G., Episkopou, V., Bentrop, D., & Spyroulias, G. A. (2012). NMR-based insights into the conformational and interaction properties of Arkadia RING-H2 E3 Ub ligase. Proteins, 80(5), 1484–1489.  https://doi.org/10.1002/prot.24048.Google Scholar
  27. 27.
    Chasapis, C. T., Loutsidou, A. K., Orkoula, M. G., & Spyroulias, G. A. (2010). Zinc binding properties of engineered RING finger domain of Arkadia E3 ubiquitin ligase. Bioinorganic Chemistry and Applications, 2010, 1–7.  https://doi.org/10.1155/2010/323152.Google Scholar
  28. 28.
    Chatr-aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,…, Tyers, M. (2017). The BioGRID interaction database: 2017 update. Nucleic Acids Research, 45(D1), D369–D379.  https://doi.org/10.1093/nar/gkw1102.Google Scholar
  29. 29.
    Cusack, M. P., Thibert, B., Bredesen, D. E., & Del Rio, G. (2007). Efficient identification of critical residues based only on protein structure by network analysis. PLoS ONE, 2(5), e421.  https://doi.org/10.1371/journal.pone.0000421.Google Scholar
  30. 30.
    Dalkas, G. A., Chasapis, C. T., Gkazonis, P. V., Bentrop, D., & Spyroulias, G. A. (2010). Conformational dynamics of the anthrax lethal factor catalytic center. Biochemistry, 49(51), 10767–10769.  https://doi.org/10.1021/bi1017792.Google Scholar
  31. 31.
    Das, A. A., Sharma, O. P., Kumar, M. S., Krishna, R., & Mathur, P. P. (2013). PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinformatics, 11(4), 241–246.  https://doi.org/10.1016/j.gpb.2013.03.002.Google Scholar
  32. 32.
    Davis, F. P., & Sali, A. (2005). PIBASE: A comprehensive database of structurally defined protein interfaces. Bioinformatics, 21(9), 1901–1907.  https://doi.org/10.1093/bioinformatics/bti277.Google Scholar
  33. 33.
    De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Computational Biology, 6(6), e1000807.  https://doi.org/10.1371/journal.pcbi.1000807.Google Scholar
  34. 34.
    del Sol, A., Fujihashi, H., & O’Meara, P. (2005). Topology of small-world networks of protein-protein complex structures. Bioinformatics, 21(8), 1311–1315.  https://doi.org/10.1093/bioinformatics/bti167.Google Scholar
  35. 35.
    Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., & Giuliani, A. (2013). Protein contact networks: An emerging paradigm in chemistry. Chemical Reviews, 113(3), 1598–1613.  https://doi.org/10.1021/cr3002356.Google Scholar
  36. 36.
    Di Ventura, B., Lemerle, C., Michalodimitrakis, K., & Serrano, L. (2006). From in vivo to in silico biology and back. Nature, 443(7111), 527–533.  https://doi.org/10.1038/nature05127.Google Scholar
  37. 37.
    Encinar, J. A., Fernandez-Ballester, G., Sanchez, I. E., Hurtado-Gomez, E., Stricher, F., Beltrao, P., & Serrano, L. (2009). ADAN: A database for prediction of protein-protein interaction of modular domains mediated by linear motifs. Bioinformatics, 25(18), 2418–2424.  https://doi.org/10.1093/bioinformatics/btp424.Google Scholar
  38. 38.
    Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39(Web Server issue), W29–W37.  https://doi.org/10.1093/nar/gkr367.Google Scholar
  39. 39.
    Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L.,…, Bateman, A. (2016). The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 44(D1), D279–D285.  https://doi.org/10.1093/nar/gkv1344.Google Scholar
  40. 40.
    Finn, R. D., Marshall, M., & Bateman, A. (2005). iPfam: Visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics, 21(3), 410–412.  https://doi.org/10.1093/bioinformatics/bti011.Google Scholar
  41. 41.
    Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R.,…, Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Research, 36(Database issue), D281–D288.  https://doi.org/10.1093/nar/gkm960.Google Scholar
  42. 42.
    Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.  https://doi.org/10.1016/0378-8733(78)90021-7.Google Scholar
  43. 43.
    Frenkel-Morgenstern, M., Gorohovski, A., Tagore, S., Sekar, V., Vazquez, M., & Valencia, A. (2017). ChiPPI: A novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer. Nucleic Acids Research, 45(12), 7094–7105.  https://doi.org/10.1093/nar/gkx423.Google Scholar
  44. 44.
    Galiakhmetov, A. R., Kovrigina, E. A., Xia, C., Kim, J. P., & Kovrigin, E. L. (2018). Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: (13)C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase. Journal of Biomolecular NMR, 70(1), 21–31.  https://doi.org/10.1007/s10858-017-0152-3.Google Scholar
  45. 45.
    Gavin, A. C., Maeda, K., & Kuhner, S. (2011). Recent advances in charting protein-protein interaction: Mass spectrometry-based approaches. Current Opinion in Biotechnology, 22(1), 42–49.  https://doi.org/10.1016/j.copbio.2010.09.007.Google Scholar
  46. 46.
    Gkazonis, P. V., Dalkas, G. A., Chasapis, C. T., Vlamis-Gardikas, A., Bentrop, D., & Spyroulias, G. A. (2010). Purification and biophysical characterization of the core protease domain of anthrax lethal factor. Biochemical and Biophysical Research Communications, 396(3), 643–647.  https://doi.org/10.1016/j.bbrc.2010.04.144.Google Scholar
  47. 47.
    Gong, S., Yoon, G., Jang, I., Bolser, D., Dafas, P., Schroeder, M.,…, Bhak, J. (2005). PSIbase: A database of protein structural interactome map (PSIMAP). Bioinformatics, 21(10), 2541–2543.  https://doi.org/10.1093/bioinformatics/bti366.Google Scholar
  48. 48.
    Greene, L. H. (2012). Protein structure networks. Brief Functional Genomics, 11(6), 469–478.  https://doi.org/10.1093/bfgp/els039.Google Scholar
  49. 49.
    Grewal, R. K., & Roy, S. (2015). Modeling proteins as residue interaction networks. Protein and Peptide Letters, 22(10), 923–933.  https://doi.org/10.2174/0929866522666150728115552.Google Scholar
  50. 50.
    Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T., & Boelens, R. (2001). The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C4HC4 RING fingers. Journal of Biological Chemistry, 276(13), 10185–10190.  https://doi.org/10.1074/jbc.M009298200.Google Scholar
  51. 51.
    Hollup, S. M., Salensminde, G., & Reuter, N. (2005). WEBnm@: A web application for normal mode analyses of proteins. BMC Bioinformatics, 6, 52.  https://doi.org/10.1186/1471-2105-6-52.Google Scholar
  52. 52.
    Janjic, V., & Przulj, N. (2012). The core Diseasome. Molecular BioSystems, 8(10), 2614–2625.  https://doi.org/10.1039/c2mb25230a.Google Scholar
  53. 53.
    Jefferson, E. R., Walsh, T. P., Roberts, T. J., & Barton, G. J. (2007). SNAPPI-DB: A database and API of Structures, iNterfaces and alignments for protein-protein interactions. Nucleic Acids Research, 35(Database issue), D580–D589.  https://doi.org/10.1093/nar/gkl836.Google Scholar
  54. 54.
    Johansson, H., Jensen, M. R., Gesmar, H., Meier, S., Vinther, J. M., Keeler, C.,…, Led, J. J. (2014). Specific and nonspecific interactions in ultraweak protein-protein associations revealed by solvent paramagnetic relaxation enhancements. Journal of the American Chemical Society, 136(29), 10277–10286.  https://doi.org/10.1021/ja503546j.Google Scholar
  55. 55.
    Kandias, N. G., Chasapis, C. T., Bentrop, D., Episkopou, V., & Spyroulias, G. A. (2009). High yield expression and NMR characterization of Arkadia E3 ubiquitin ligase RING-H2 finger domain. Biochemical and Biophysical Research Communications, 378(3), 498–502.  https://doi.org/10.1016/j.bbrc.2008.11.055.Google Scholar
  56. 56.
    Karimova, G., Pidoux, J., Ullmann, A., & Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5752–5756.  https://doi.org/10.1073/pnas.95.10.5752.Google Scholar
  57. 57.
    Kastritis, P. L., & Bonvin, A. M. (2010). Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. Journal of Proteome Research, 9(5), 2216–2225.  https://doi.org/10.1021/pr9009854.Google Scholar
  58. 58.
    Krebs, W. G., Alexandrov, V., Wilson, C. A., Echols, N., Yu, H., & Gerstein, M. (2002). Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic. Proteins, 48(4), 682–695.  https://doi.org/10.1002/prot.10168.Google Scholar
  59. 59.
    La, D., Kong, M., Hoffman, W., Choi, Y. I., & Kihara, D. (2013). Predicting permanent and transient protein-protein interfaces. Proteins, 81(5), 805–818.  https://doi.org/10.1002/prot.24235.Google Scholar
  60. 60.
    Li, H., Chang, Y. Y., Lee, J. Y., Bahar, I., & Yang, L. W. (2017). DynOmics: Dynamics of structural proteome and beyond. Nucleic Acids Research, 45(W1), W374–W380.  https://doi.org/10.1093/nar/gkx385.Google Scholar
  61. 61.
    Li, H., Chang, Y. Y., Yang, L. W., & Bahar, I. (2016). iGNM 2.0: The Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Research, 44(D1), D415–D422.  https://doi.org/10.1093/nar/gkv1236.Google Scholar
  62. 62.
    Li, M., Simonetti, F. L., Goncearenco, A., & Panchenko, A. R. (2016). MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Research, 44(W1), W494–W501.  https://doi.org/10.1093/nar/gkw374.Google Scholar
  63. 63.
    Lindahl, E., Azuara, C., Koehl, P., & Delarue, M. (2006). NOMAD-Ref: Visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Research, 34, W52–W56.  https://doi.org/10.1093/nar/gkl082. (Web Server issue).Google Scholar
  64. 64.
    Lopez-Blanco, J. R., Garzon, J. I., & Chacon, P. (2011). iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics, 27(20), 2843–2850.  https://doi.org/10.1093/bioinformatics/btr497.Google Scholar
  65. 65.
    Memisevic, V., Wallqvist, A., & Reifman, J. (2013). Reconstituting protein interaction networks using parameter-dependent domain-domain interactions. BMC Bioinformatics, 14, 154.  https://doi.org/10.1186/1471-2105-14-154.Google Scholar
  66. 66.
    Mosca, R., Céol, A., Stein, A., Olivella, R., & Aloy, P. (2014). 3did: A catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 42(D1), D374–D379.  https://doi.org/10.1093/nar/gkt887.Google Scholar
  67. 67.
    Oltvai, Z. N., & Barabasi, A. L. (2002). Systems biology. Life’s complexity pyramid. Science, 298(5594), 763–764.  https://doi.org/10.1126/science.1078563.Google Scholar
  68. 68.
    Paola, L. D., Paci, P., Santoni, D., Ruvo, M. D., & Giuliani, A. (2012). Proteins as sponges: A statistical journey along protein structure organization principles. Journal of Chemical Information and Modeling, 52(2), 474–482.  https://doi.org/10.1021/ci2005127.Google Scholar
  69. 69.
    Patra, S. M., & Vishveshwara, S. (2000). Backbone cluster identification in proteins by a graph theoretical method. Biophysical Chemistry, 84(1), 13–25.  https://doi.org/10.1016/S0301-4622(99)00134-9.Google Scholar
  70. 70.
    Peana, M., Chasapis, C. T., Simula, G., Medici, S., & Zoroddu, M. A. (2018). A Model for Manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. Journal of Trace Elements in Medicine and Biology, 50, 465–473.  https://doi.org/10.1016/j.jtemb.2018.02.001.Google Scholar
  71. 71.
    Pugalenthi, G. (2006). iMOTdb—A comprehensive collection of spatially interacting motifs in proteins. Nucleic Acids Research, 34(90001), D285–D286.  https://doi.org/10.1093/nar/gkj125.Google Scholar
  72. 72.
    Putignano, V., Rosato, A., Banci, L., & Andreini, C. (2018). MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids Research, 46(D1), D459–D464.  https://doi.org/10.1093/nar/gkx989.Google Scholar
  73. 73.
    Riley, R., Lee, C., Sabatti, C., & Eisenberg, D. (2005). Inferring protein domain interactions from databases of interacting proteins. Genome Biology, 6(10), R89.  https://doi.org/10.1186/gb-2005-6-10-r89.Google Scholar
  74. 74.
    Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33, W382–W388.  https://doi.org/10.1093/nar/gki387. (Web Server issue).Google Scholar
  75. 75.
    Scott, J. D., & Pawson, T. (2009). Cell signaling in space and time: Where proteins come together and when they’re apart. Science, 326(5957), 1220–1224.  https://doi.org/10.1126/science.1175668.Google Scholar
  76. 76.
    Shannon, P. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.  https://doi.org/10.1101/gr.1239303.Google Scholar
  77. 77.
    Shoemaker, B. A., Panchenko, A. R., & Bryant, S. H. (2006). Finding biologically relevant protein domain interactions: Conserved binding mode analysis. Protein Science, 15(2), 352–361.  https://doi.org/10.1110/ps.051760806.Google Scholar
  78. 78.
    Stefanidou, M., Loutsidou, A. C., Chasapis, C. T., & Spiliopoulou, C. A. (2011). Immunotoxicity of cocaine and crack. Current Drug Abuse Reviews, 4(2), 95–97.  https://doi.org/10.2174/1874473711104020095.Google Scholar
  79. 79.
    Stelzl, U., & Wanker, E. (2006). The value of high quality protein–protein interaction networks for systems biology. Current Opinion in Chemical Biology, 10(6), 551–558.  https://doi.org/10.1016/j.cbpa.2006.10.005.Google Scholar
  80. 80.
    Stumpf, M. P. H., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., & Wiuf, C. (2008). Estimating the size of the human interactome. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6959–6964.  https://doi.org/10.1073/pnas.0708078105.Google Scholar
  81. 81.
    Suhre, K., & Sanejouand, Y. H. (2004). ElNemo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Research, 32, W610–W614.  https://doi.org/10.1093/nar/gkh368. (Web Server issue).Google Scholar
  82. 82.
    Taylor, N. R. (2013). Small world network strategies for studying protein structures and binding. Computational and Structural Biotechnology Journal, 5, e201302006.  https://doi.org/10.5936/csbj.201302006.Google Scholar
  83. 83.
    Thibert, B., Bredesen, D. E., & del Rio, G. (2005). Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinformatics, 6, 213.  https://doi.org/10.1186/1471-2105-6-213.Google Scholar
  84. 84.
    Tiwari, S. P., & Reuter, N. (2018). Conservation of intrinsic dynamics in proteins—what have computational models taught us? Current Opinion in Structural Biology, 50, 75–81.  https://doi.org/10.1016/j.sbi.2017.12.001.Google Scholar
  85. 85.
    van Zundert, G. C. P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E.,…, Bonvin, A. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725.  https://doi.org/10.1016/j.jmb.2015.09.014.Google Scholar
  86. 86.
    Vanhee, P., Reumers, J., Stricher, F., Baeten, L., Serrano, L., Schymkowitz, J., & Rousseau, F. (2010). PepX: A structural database of non-redundant protein-peptide complexes. Nucleic Acids Research, 38(Database issue), D545–D551.  https://doi.org/10.1093/nar/gkp893.Google Scholar
  87. 87.
    Vendruscolo, M., Dokholyan, N. V., Paci, E., & Karplus, M. (2002). Small-world view of the amino acids that play a key role in protein folding. Physics Review E, 65(6 Pt 1), 061910.  https://doi.org/10.1103/PhysRevE.65.061910.Google Scholar
  88. 88.
    Vinogradova, O., & Qin, J. (2012). NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Topics in Current Chemistry, 326, 35–45.  https://doi.org/10.1007/128_2011_216.Google Scholar
  89. 89.
    Vourtsis, D. J., Chasapis, C. T., Pairas, G., Bentrop, D., & Spyroulias, G. A. (2014). NMR conformational properties of an Anthrax lethal factor domain studied by multiple amino acid-selective labeling. Biochemical and Biophysical Research Communications, 450(1), 335–340.  https://doi.org/10.1016/j.bbrc.2014.05.123.Google Scholar
  90. 90.
    Wachi, S., Yoneda, K., & Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21(23), 4205–4208.  https://doi.org/10.1093/bioinformatics/bti688.Google Scholar
  91. 91.
    Wagner, G. (1993). NMR relaxation and protein mobility. Current Opinion in Structural Biology, 3(5), 748–754.  https://doi.org/10.1016/0959-440x(93)90059-t.Google Scholar
  92. 92.
    Wako, H., & Endo, S. (2013). Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Computational Biology and Chemistry, 44, 22–30.  https://doi.org/10.1016/j.compbiolchem.2013.02.006.Google Scholar
  93. 93.
    Wako, H., Kato, M., & Endo, S. (2004). ProMode: A database of normal mode analyses on protein molecules with a full-atom model. Bioinformatics, 20(13), 2035–2043.  https://doi.org/10.1093/bioinformatics/bth197.Google Scholar
  94. 94.
    Westermarck, J., Ivaska, J., & Corthals, G. L. (2013). Identification of protein interactions involved in cellular signaling. Molecular and Cellular Proteomics, 12(7), 1752–1763.  https://doi.org/10.1074/mcp.R113.027771.Google Scholar
  95. 95.
    Wiesner, S., & Sprangers, R. (2015). Methyl groups as NMR probes for biomolecular interactions. Current Opinion in Structural Biology, 35, 60–67.  https://doi.org/10.1016/j.sbi.2015.08.010.Google Scholar
  96. 96.
    Wuchty, S., & Almaas, E. (2005). Peeling the yeast protein network. Proteomics, 5(2), 444–449.  https://doi.org/10.1002/pmic.200400962.Google Scholar
  97. 97.
    Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676–3678.  https://doi.org/10.1093/bioinformatics/btw514.Google Scholar
  98. 98.
    Yan, W., Zhou, J., Sun, M., Chen, J., Hu, G., & Shen, B. (2014). The construction of an amino acid network for understanding protein structure and function. Amino Acids, 46(6), 1419–1439.  https://doi.org/10.1007/s00726-014-1710-6.Google Scholar
  99. 99.
    Yellaboina, S., Tasneem, A., Zaykin, D. V., Raghavachari, B., & Jothi, R. (2011). DOMINE: A comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Research, 39(Database issue), D730–D735.  https://doi.org/10.1093/nar/gkq1229.Google Scholar
  100. 100.
    Yook, S. H., Oltvai, Z. N., & Barabasi, A. L. (2004). Functional and topological characterization of protein interaction networks. Proteomics, 4(4), 928–942.  https://doi.org/10.1002/pmic.200300636.Google Scholar
  101. 101.
    Zimmermann, M. T., Kloczkowski, A., & Jernigan, R. L. (2011). MAVENs: Motion analysis and visualization of elastic networks and structural ensembles. BMC Bioinformatics, 12, 264.  https://doi.org/10.1186/1471-2105-12-264.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Chemical Engineering SciencesFoundation for Research & Technology-Hellas (FORTH/ICE-HT)PatrasGreece

Personalised recommendations