Advertisement

Molecular Biotechnology

, Volume 61, Issue 1, pp 12–19 | Cite as

Effect of C-Terminus Modification in Salmonella typhimurium FliC on Protein Purification Efficacy and Bioactivity

  • Mohammad-hosein Khani
  • Masoumeh BagheriEmail author
  • Ali Dehghanian
  • Azadeh Zahmatkesh
  • Soheila Moradi Bidhendi
  • Zahra Salehi Najafabadi
  • Reza Banihashemi
Original Paper

Abstract

Recombinant flagellin (FliC) has shown low efficacy in purification because of inclusion bodies formation and aggregation. We hypothesized preserving TLR5 binding site of FliC and removing some amino acids could be responsible for aggregation and solubility improvement. Hence, a bioinformatics study was performed to find hotspots in aggregate formation. Protein modeling was carried out by SWISS-MODEL and I-TASSER servers and models were compared by MATRAS server and Chimera 1.11.2. Gene modification was carried out based on bioinformatics studies. Genes, (truncated modified fliC (tmFliC) and full-length fliC (flFliC)), were cloned and expressed in pET-21a vector. Protein purification was carried out using HIS-Tag method. Proliferation assay and also induction of IL-8 in HEK293 cells were performed to confirm bioactivity function of tmFliC. Bioinformatics results showed that partial deletion of C-terminus may increase solubility without unfavorable effect on TLR5 recognition. Also, model comparison showed that this protein may preserve 3D structure. In addition, GlobPlot server demonstrated that tmFliC formed its globular domains which were important in TLR5 recognition. As we expected, high purification efficacy for tmFliC compared with flFliC was also obtained in experimental studies and a proper function for tmFliC was observed. The tmFliC enhanced cell proliferation in HEK293 cells compare with control after 24 h. Also, IL-8 level was increased with stimulation by tmFliC after 24 h. In conclusion, reducing hydrophobicity in C-terminus and deleting necessary amino acids for filament formation may increase protein solubility.

Keywords

Flagellin Protein modeling Purification efficacy Proliferation Bioinformatics 

Notes

Acknowledgements

The authors would like to show their gratitude to Dr. Majid Esmaelizad from Razi Vaccine and Serum Research Institute.

Compliance with Ethical Standards

Conflict of interest

The authors confirm that they have no conflicts of interest.

References

  1. 1.
    Ramos, H. C., Rumbo, M., & Sirard, J. C. (2004). Bacterial flagellins: Mediators of pathogenicity and host immune responses in mucosa. Trends in Microbiology, 12(11), 509–517.CrossRefGoogle Scholar
  2. 2.
    Bao, W., Wang, Y., Fu, Y., Jia, X., Li, J., Vangan, N., Bao, L., Hao, H., & Wang, Z. (2015) mTORC1 regulates flagellin-induced inflammatory response in macrophages. PLoS ONE, 10(5), e0125910.CrossRefGoogle Scholar
  3. 3.
    Gewirtz, A. T., Yu, Y., Krishna, U. S., Israel, D. A., Lyons, S. L., & Peek, R. M. (2004). Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. Journal of Infectious Diseases, 189(10), 1914–1920.CrossRefGoogle Scholar
  4. 4.
    Taherkhani, R., Farshadpour, F., Makvandi, M., & Samarbafzadeh, A. R. (2014) Cloning of FliC gene from Salmonella typhimurium in the expression vector pVAX1 and evaluation of its expression in eukaryotic cells. Jundishapur Journal of Microbiology, 7(11), e12351.Google Scholar
  5. 5.
    Faezi, S., Bahrmand, A. R., Mahdavi, M., Siadat, S. D., Nikokar, I., Sardari, S., & Holder, I. A. (2016). High yield overexpression, refolding, purification and characterization of Pseudomonas aeruginosa type B-flagellin: An improved method without sonication. International Journal of Molecular and Cellular Medicine, 5(1), 37.Google Scholar
  6. 6.
    Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M., & Popovic, B. (2017). Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports, 7(1), 8200.CrossRefGoogle Scholar
  7. 7.
    Ducat, T., Declerck, N., Gostan, T., Kochoyan, M., & Demene, H. (2006). Rapid determination of protein solubility and stability conditions for NMR studies using incomplete factorial design. Journal of Biomolecular NMR, 34(3), 137–151.CrossRefGoogle Scholar
  8. 8.
    Trevino, S. R., Scholtz, J. M., & Pace, C. N. (2008). Measuring and increasing protein solubility. Journal of Pharmaceutical Sciences, 97(10), 4155–4166.CrossRefGoogle Scholar
  9. 9.
    Agostini, F., Cirillo, D., Livi, C. M., Ponti, D. R., Tartaglia, G. G. (2014). ccSOL omics: A webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics, 30(20), 2975–2977.CrossRefGoogle Scholar
  10. 10.
    Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., & Frishman, D. (2012). PROSO II—A new method for protein solubility prediction. The FEBS Journal, 279(12), 2192–2200.CrossRefGoogle Scholar
  11. 11.
    Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefGoogle Scholar
  12. 12.
    Shander, A., Gromiha, M., Fawareh, H., & Sarai, A. (2004). ASA view: Solvent accessibility graphics for proteins. Bioinformatics, 51, 51.Google Scholar
  13. 13.
    Linding, R., Russell, R. B., Neduva, V., & Gibson, T. J. (2003). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31(13), 3701–3708.CrossRefGoogle Scholar
  14. 14.
    Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  15. 15.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258.CrossRefGoogle Scholar
  16. 16.
    Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40.CrossRefGoogle Scholar
  17. 17.
    Kawabata, T. (2003). MATRAS: A program for protein 3D structure comparison. Nucleic Acids Research, 31(13), 3367–3369.CrossRefGoogle Scholar
  18. 18.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couchm, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.CrossRefGoogle Scholar
  19. 19.
    de Zoete, M. R., Keestra, A. M., Wagenaar, J. A., & van Putten, J. P. (2010). Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni Flagellin. Journal of Biological Chemistry, 285(16), 12149–12158.CrossRefGoogle Scholar
  20. 20.
    Molloy, M. J., Bouladoux, N., & Belkaid, Y. (2012). Intestinal microbiota: Shaping local and systemic immune responses. Seminars in Immunology, 24(1), 58–66.CrossRefGoogle Scholar
  21. 21.
    Skountzou, I., del Pilar Martin, M., Wang, B., Ye, L., Koutsonanos, D., Weldon, W., Jacob, J., & Compans, R. W. (2010). Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine, 28(24), 4103–4112.CrossRefGoogle Scholar
  22. 22.
    Ahmadian, G., Ghahroudi, M. A., Rastgoo, N., & Mianji, G. R. (2005). Bacterial expression and functional characterization of a naturally occurring exon 6-less preprochymosin cDNA. Iranian Journal of Biotechnology, 3(1), 16–25.Google Scholar
  23. 23.
    Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. ‎The Journal of Biochemistry, 88(6), 1895–1898.Google Scholar
  24. 24.
    Ozin, J. A., Claret, L., Auvray, F., & Hughes, C. (2003). The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerization. FEMS Microbiology Letters, 219, 219–224.CrossRefGoogle Scholar
  25. 25.
    Forstnerič, V., Ivičak-Kocjan, K., Plaper, T., Jerala, R., & Benčina, M. (2017) The role of the C-terminal D0 domain of flagellin in activation of Toll like receptor 5. PLoS Pathogens, 13(8), e1006574.CrossRefGoogle Scholar
  26. 26.
    Smith, K. D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M. A., Barrett, S. L. R., Cookson, B. T., & Aderem, A. (2003). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunology, 4, 1247.CrossRefGoogle Scholar
  27. 27.
    Vonderviszt, F., Shin-Ichi, A., & Keiichi, N. (1991). Role of the disordered terminal regions of Flagellin in filament formation and stability. Journal of Molecular Biology, 221(4), 1461–1474.CrossRefGoogle Scholar
  28. 28.
    Wan, W., Wille, H., Stöhr, J., Kendall, A., Bian, W., McDonald, M., … Stubbs, G. (2015). Structural studies of truncated forms of the prion protein PrP. Biophysical Journal, 108(6), 1548–1554.CrossRefGoogle Scholar
  29. 29.
    Rigi, G., Beyranvand, P., Ghaedmohammadi, S., Heidarpanah, S., Akbari Noghabi, K., & Ahmadian, G. (2015) Comparison of the extracellular full-length and truncated recombinant protein A production in Escherichia coli BL21 (DE3). Journal of Paramedical Sciences, 6(3), 2008–4978.Google Scholar
  30. 30.
    Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., & Fournier, D. (2004). Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochemistry, 5, 9.CrossRefGoogle Scholar
  31. 31.
    Gupta, S. K., Deb, R., Gaikwad, S., Saravanan, R., Mohan, C. M., & Dey, S. (2013). Recombinant flagellin and its cross-talk with lipopolysaccharide—Effect on pooled chicken peripheral blood mononuclear cells. Research in Veterinary Science, 95, 930–935.CrossRefGoogle Scholar
  32. 32.
    Kogut, M. H., Iqbal, M., He, H., Philbin, V., Kaiser, P., & Smith, A. (2005). Expression and function of Toll-like receptors in chicken heterophils. Developmental and Comparative Immunology, 29, 791–807.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad-hosein Khani
    • 1
  • Masoumeh Bagheri
    • 1
    Email author
  • Ali Dehghanian
    • 2
  • Azadeh Zahmatkesh
    • 1
  • Soheila Moradi Bidhendi
    • 3
  • Zahra Salehi Najafabadi
    • 4
  • Reza Banihashemi
    • 5
  1. 1.Department of Genomics and Genetic EngineeringRazi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  2. 2.Department of BiologyNourdanesh Institute of Higher EducationMeymehIran
  3. 3.Department of MicrobiologyRazi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  4. 4.Department of Central LaboratoryRazi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  5. 5.Department of ImmunologyRazi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO)KarajIran

Personalised recommendations