Advertisement

Molecular Biotechnology

, Volume 61, Issue 1, pp 60–71 | Cite as

Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties

  • Ruowei Li
  • Guangbo Kang
  • Min Hu
  • He HuangEmail author
Review
  • 94 Downloads

Abstract

Ribosome display is a powerful engineering research tool for the high-throughput selection of peptides or proteins, which results in the generation of high-performance binders against nearly any antigen of interest. As a cell-free display system, ribosome display has been well developed with many outstanding achievements for over 20 years. Compared with other related display techniques, ribosome display shows unique advantages and development prospects. This tool has been successfully exploited for the selection of functional and specific binders in vitro. This review provides a comprehensive survey of the applications of ribosome display in screening or evolving functional proteins as well as in diagnostics and therapeutics. Previous papers on ribosome display failed to comprehensively review evolutionary strategies for proteins. In the present paper, we review all existing evolutionary strategies that have been combined with ribosome display. We also discuss shortcomings, improvement strategies, and research tendency.

Keywords

Ribosome display Display technologies Affinity maturation Stability optimization Evolutionary strategies Diagnostics Therapeutics 

Abbreviations

E. coli

Escherichia coli

scFv

Single-chain variable fragment

SPR

Surface plasmon resonance

RFs

Release factors

RRFs

Ribosome recycling factors

Constant region of Igκ chain

CH

Heavy chain constant domain

PCR

Polymerase chain reaction

RT-PCR

Reverse transcription-polymerase chain reaction

VHH

Variable region of a heavy chain antibody

PM

Parsimonious mutagenesis

RAGE

Receptor for advanced glycation end products

DARPins

Designed ankyrin repeat proteins

StEP

Staggered extension process

IAA

Indoleacetic acid

PrP

Prion protein

BSA

Bovine serum albumin

T-NHL

T-cell non-Hodgkin lymphoma

DTT

Dithiothreitol

HCV

Hepatitis C virus

HCVcc

HCV cell culture

PURE

Protein synthesis using recombinant elements

ECD

Extracellular domain

Her2

Human epidermal growth factor receptor 2

KD

Equilibrium dissociation constants

VH

Heavy chain variable domain

K

The complete constant region of the mouse κ light chain

pM

Picomolar

Notes

Acknowledgements

We would like to thank colleagues working on display technologies in our laboratory for their assistance in the field. This work is supported by Grants from National Natural Science Foundation of China (No. 31470967).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Farajnia, S., Ahmadzadeh, V., Tanomand, A., Veisi, K., Khosroshahi, S. A., & Rahbarnia, L. (2014). Development trends for generation of single-chain antibody fragments. Immunopharmacology and Immunotoxicology, 36, 297–308.CrossRefGoogle Scholar
  2. 2.
    McCafferty, J., & Schofield, D. (2015). Identification of optimal protein binders through the use of large genetically encoded display libraries. Current Opinion in Chemical Biology, 26, 16–24.CrossRefGoogle Scholar
  3. 3.
    Low, N. M., Holliger, P. H., & Winter, G. (1996). Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. Journal of Molecular Biology, 260, 359–368.CrossRefGoogle Scholar
  4. 4.
    Li, M., Fan, X., Liu, J., Hu, Y., & Huang, H. (2015). Selection by phage display of nanobodies directed against hypoxia inducible factor-1alpha (HIF-1alpha). Biotechnology and Applied Biochemistry, 62, 738–745.CrossRefGoogle Scholar
  5. 5.
    Mattheakis, L. C., Bhatt, R. R., & Dower, W. J. (1994). An in vitro polysome display system for identifying ligands from very large peptide libraries. Proceedings of the National Academy of Sciences of the United States of America, 91, 9022–9026.CrossRefGoogle Scholar
  6. 6.
    Douthwaite, J. A., & Jackson, R. H. (2012) Ribosome display and related technologies. New York: Humana Press.CrossRefGoogle Scholar
  7. 7.
    Shang, G., Feng, D., Lu, F., Zhang, H., Cang, H., Gao, W., & Bi, R. (2014). Purification, crystallization and preliminary crystallographic analysis of a ribosome-recycling factor from Thermoanaerobacter tengcongensis (TteRRF). Acta Crystallographica F, 70, 588–591.CrossRefGoogle Scholar
  8. 8.
    He, M., & Taussig, M. J. (2002) Ribosome display: Cell-free protein display technology. Briefings in Functional Genomics & Proteomics, 1, 204–212.CrossRefGoogle Scholar
  9. 9.
    Hanes, J., & Plückthun, A. (1997). In vitro Selection and Evolution of Functional Proteins by Using Ribosome Display. Proceedings of the National Academy of Sciences of the United States of America, 94, 4937–4942.CrossRefGoogle Scholar
  10. 10.
    Zhao, X.-L., Chen, W.-Q., Yang, Z.-H., Li, J.-M., Zhang, S.-J., & Tian, L.-F. (2009). Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display. Journal of Biotechnology, 144, 253–258.CrossRefGoogle Scholar
  11. 11.
    Bencurova, E., Pulzova, L., Flachbartova, Z., & Bhide, M. (2015). A rapid and simple pipeline for synthesis of mRNA-ribosome-VHH complexes used in single-domain antibody ribosome display. Molecular Biosystems, 11, 1515–1524.CrossRefGoogle Scholar
  12. 12.
    Pacheco, S., Canton, E., Zuniga-Navarrete, F., Pecorari, F., Bravo, A., & Soberon, M. (2015). Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express., 5, 73.CrossRefGoogle Scholar
  13. 13.
    Manandhar, Y., Wang, W., Inoue, J., Hayashi, N., Uzawa, T., Ito, Y., Aigaki, T., & Ito, Y. (2017). Interactions of in vitro selected fluorogenic peptide aptamers with calmodulin. Biotechnology Letter, 39, 375–382.CrossRefGoogle Scholar
  14. 14.
    Hanes, J., Jermutus, L., Schaffitzel, C., & Plückthun, A. (1999). Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Letters, 450, 105–110.CrossRefGoogle Scholar
  15. 15.
    Zahnd, C., Amstutz, P., & Pluckthün, A. (2007). Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods, 4, 269–279.CrossRefGoogle Scholar
  16. 16.
    Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W. G. J., Kobilka, B. K., & Steyaert, J. (2014). A general protocol for the generation of nanobodies for structural biology. Nature Protocols, 9, 674–693.CrossRefGoogle Scholar
  17. 17.
    Zadravec, P., Mareckova, L., Petrokova, H., Hodnik, V., Perisic Nanut, M., Anderluh, G., Strukelj, B., Maly, P., & Berlec, A. (2016). Development of recombinant lactococcus lactis displaying albumin-binding domain variants against shiga toxin 1 B subunit. PLoS ONE, 11, e0162625.CrossRefGoogle Scholar
  18. 18.
    Zhao, X. L., Tian, L. F., Zhang, S. J., Li, J. M., Feng, H., Wang, L. M., Wang, S., Wang, J., Wang, T., & Chen, W. Q. (2016). Novel human three-domain antibody fragments against sTNF alpha as well as tmTNF alpha with high affinity generated by the combination of ribosome display and E. coli expression system. Scandinavian Journal of Immunology, 83, 267–278.CrossRefGoogle Scholar
  19. 19.
    Pan, Y., Mao, W., Liu, X., Xu, C., He, Z., Wang, W., & Yan, H. (2012). Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168, 967–979.CrossRefGoogle Scholar
  20. 20.
    Ahangarzadeh, S., Bandehpour, M., & Kazemi, B. (2017). Selection of single-chain variable fragments specific for Mycobacterium tuberculosis ESAT-6 antigen using ribosome display. Iranian Journal of Basic Medical Sciences, 20, 327–333.Google Scholar
  21. 21.
    He, M., & Taussig, M. J. (1997). Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Research, 25, 5132–5134.CrossRefGoogle Scholar
  22. 22.
    Gan, R., & Jewett, M. C. (2016). Evolution of translation initiation sequences using in vitro yeast ribosome display. Biotechnology and Bioengineering, 113, 1777–1786.CrossRefGoogle Scholar
  23. 23.
    Douthwaite, J. A., Groves, M. A., Dufner, P., & Jermutus, L. (2006). An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Engineering Design & Selection Peds, 19, 85–90.CrossRefGoogle Scholar
  24. 24.
    Veggiani, G., Ossolengo, G., Aliprandi, M., Cavallaro, U., & De, M. A. (2011) Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1. Biochemical & Biophysical Research Communications, 408, 692–696.CrossRefGoogle Scholar
  25. 25.
    Murray, C. J., & Baliga, R. (2013). Cell-free translation of peptides and proteins: from high throughput screening to clinical production. Current Opinion in Chemical Biology, 17, 420–426.CrossRefGoogle Scholar
  26. 26.
    Blondel, M., Soubigou, F., Evrard, J., Nguyen, P. H., Hasin, N., Chedin, S., Gillet, R., Contesse, M. A., Friocourt, G., Stahl, G., Jones, G. W., & Voisset, C. (2016). Protein folding activity of the ribosome is involved in yeast prion propagation. Science Report, 6, 32117.CrossRefGoogle Scholar
  27. 27.
    Forster, A. C., Cornish, V. W., & Blacklow, S. C. (2004). Pure translation display. Analytical Biochemistry, 333, 358–364.CrossRefGoogle Scholar
  28. 28.
    Chong, S. (2014) Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Current Protocols in Molecular Biology, 108, 16.30.1–16.30.11.Google Scholar
  29. 29.
    Cong, C., Yu, X., He, Y. Z., Dai, Y. J., Zhang, Y. X., Wang, M. R., & He, M. Y. (2016). Cell-free ribosome display and selection of antibodies on arrayed antigens. Proteomics, 16, 1291–1296.CrossRefGoogle Scholar
  30. 30.
    Lipovsek, D., & Plückthun, A. (2004). In-vitro protein evolution by ribosome display and mRNA display. Journal of Immunological Methods, 290, 51–67.CrossRefGoogle Scholar
  31. 31.
    Kim, J. M., Shin, H. J., Kim, K., & Lee, M. S. (2007). A pseudoknot improves selection efficiency in ribosome display. Molecular Biotechnology, 36, 32–37.CrossRefGoogle Scholar
  32. 32.
    Yau, K. Y., Dubuc, G., Li, S., Hirama, T., Mackenzie, C. R., Jermutus, L., Hall, J. C., & Tanha, J. (2005). Affinity maturation of a V(H)H by mutational hotspot randomization. Journal of Immunological Methods, 297, 213–224.CrossRefGoogle Scholar
  33. 33.
    Finlay, W. J., Cunningham, O., Lambert, M. A., Darmanin-Sheehan, A., Liu, X., Fennell, B. J., Mahon, C. M., Cummins, E., Wade, J. M., & O’Sullivan, C. M. (2009). Affinity maturation of a humanized rat antibody for Anti-RAGE therapy: Comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. Journal of Molecular Biology, 388, 541–558.CrossRefGoogle Scholar
  34. 34.
    Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O., & Pluckthun, A. (2007). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. Journal of Molecular Biology, 369, 1015–1028.CrossRefGoogle Scholar
  35. 35.
    Po, K., Chan, E., & Chen, S. (2017) Functional characterization of CTX-M-14 and CTX-M-15 β-lactamase by in vitro DNA shuffling. Antimicrobial Agents & Chemotherapy, 61, AAC.00891–AAC.00817.CrossRefGoogle Scholar
  36. 36.
    Sheedy, C., Yau, K. Y., Hirama, T., Mackenzie, C. R., & Hall, J. C. (2006). Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families. Journal of Agricultural & Food Chemistry, 54, 3668–3678.CrossRefGoogle Scholar
  37. 37.
    Schilling, J., Schoppe, J., & Plückthun, A. (2014). From DARPins to LoopDARPins: Novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. Journal of Molecular Biology, 426, 691–721.CrossRefGoogle Scholar
  38. 38.
    Rothe, A., Nathanielsz, A., Hosse, R. J., Oberhauser, F., Strandmann, E. P., Engert, A., Hudson, P. J., & Power, B. E. (2007). Selection of human anti-CD28 scFvs from a T-NHL related scFv library using ribosome display. Journal of Biotechnology, 130, 448–454.CrossRefGoogle Scholar
  39. 39.
    Grimm, S., Salahshour, S., & Nygren, P. (2012). Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity. New Biotechnology, 29, 534–542.CrossRefGoogle Scholar
  40. 40.
    Buchanan, A., Ferraro, F., Rust, S., Sridharan, S., Franks, R., Dean, G., McCourt, M., Jermutus, L., & Minter, R. (2012). Improved drug-like properties of therapeutic proteins by directed evolution. Protein engineering, design & Selection: PEDS, 25, 631–638.CrossRefGoogle Scholar
  41. 41.
    Matsuura, T., & Plückthun, A. (2003). Selection based on the folding properties of proteins with ribosome display. FEBS Letters, 539, 24–28.CrossRefGoogle Scholar
  42. 42.
    Harel, I. N., & Benhar, I. (2012). Selection of antibodies from synthetic antibody libraries. Archives of Biochemistry & Biophysics, 526, 87–98.CrossRefGoogle Scholar
  43. 43.
    Jiao, L., Liu, Y., Zhang, X., Liu, B., Zhang, C., & Liu, X. (2017). Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Applied Microbiology and Biotechnology, 101, 6071–6082.CrossRefGoogle Scholar
  44. 44.
    Sheedy, C., Roger MacKenzie, C., & Hall, J. C. (2007). Isolation and affinity maturation of hapten-specific antibodies. Biotechnology Advances, 25, 333–352.CrossRefGoogle Scholar
  45. 45.
    Thom, G., Cockroft, A. C., Buchanan, A. G., Canclotti, C. J., Cohen, E. S., Lowne, D., Monk, P., Shorrock-Hart, C. P., Jermutus, L., & Minter, R. R. (2006). Probing a protein-protein interaction by in vitro evolution. Proceedings of the National Academy of Sciences of the United States of America, 103, 7619–7624.CrossRefGoogle Scholar
  46. 46.
    Zahnd, C., Pecorari, F., Straumann, N., Wyler, E., & Plückthun, A. (2006). Selection and characterization of Her2 binding-designed ankyrin repeat proteins. Journal of Biological Chemistry, 281, 35167.CrossRefGoogle Scholar
  47. 47.
    Stemmer, W. P. C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391.CrossRefGoogle Scholar
  48. 48.
    Dreier, B., & Plückthun, A. (2011). Ribosome display: A technology for selecting and evolving proteins from large libraries. Methods in Molecular Biology, 687, 283–306.CrossRefGoogle Scholar
  49. 49.
    Zhao, H., & Zha, W. (2006). In vitro ‘sexual’ evolution through the PCR-based staggered extension process (StEP). Nature Protocols, 1, 1865–1871.CrossRefGoogle Scholar
  50. 50.
    Groves, M. A. T., & Osbourn, J. K. (2005). Applications of ribosome display to antibody drug discovery. Expert Opinion on Biological Therapy, 5, 125–135.CrossRefGoogle Scholar
  51. 51.
    Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C., & Plückthun, A. (2004). Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. Journal of Biological Chemistry, 279, 18870–18877.CrossRefGoogle Scholar
  52. 52.
    Huang, R., Gorman, K. T., Vinci, C. R., Dobrovetsky, E., Graslund, S., & Kay, B. K. (2015). Streamlining the pipeline for generation of recombinant affinity reagents by integrating the affinity maturation step. International Journal of Molecular Sciences, 16, 23587–23603.CrossRefGoogle Scholar
  53. 53.
    Zahnd, C., Sarkar, C. A., & Plückthun, A. (2010). Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Engineering Design & Selection Peds, 23, 175.CrossRefGoogle Scholar
  54. 54.
    Luginbühl, B., Kanyo, Z., Jones, R. M., Fletterick, R. J., Prusiner, S. B., Cohen, F. E., Williamson, R. A., Burton, D. R., & Plückthun, A. (2006). Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. Journal of Molecular Biology, 363, 75–97.CrossRefGoogle Scholar
  55. 55.
    Liu, J. Q., Ning, B., Liu, M., Sun, Y. A., Sun, Z. Y., Zhang, Y. H., Fan, X. J., Zhou, Z. J., & Gao, Z. X. (2012). Construction of ribosome display library based on lipocalin scaffold and screening anticalins with specificity for estradiol. Analyst, 137, 2470–2479.CrossRefGoogle Scholar
  56. 56.
    Chin, S. E., Ferraro, F., Groves, M., Liang, M., Vaughan, T. J., & Dobson, C. L. (2015). Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses. Journal of Immunological Methods, 416, 49–58.CrossRefGoogle Scholar
  57. 57.
    Dreier, B., & Plückthun, A. (2012). Rapid selection of high-affinity binders using ribosome display. Methods in Molecular Biology, 805, 261–286.CrossRefGoogle Scholar
  58. 58.
    Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 157, 220–233.CrossRefGoogle Scholar
  59. 59.
    Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., & Plückthun, A. (2001). Tailoring in vitro evolution for protein affinity or stability. Proceedings of the National Academy of Sciences of the United States of America, 98, 75.CrossRefGoogle Scholar
  60. 60.
    Heyduk, E., & Heyduk, T. (2014). Ribosome display enhanced by next generation sequencing: A tool to identify antibody-specific peptide ligands. Analytical Biochemistry, 464, 73–82.CrossRefGoogle Scholar
  61. 61.
    Consortium, I. H. G. S. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRefGoogle Scholar
  62. 62.
    Galan, A., Comor, L., Horvatic, A., Kules, J., Guillemin, N., Mrljak, V., & Bhide, M. (2016). Library-based display technologies: where do we stand? Molecular Biosystems, 12, 2342–2358.CrossRefGoogle Scholar
  63. 63.
    Stefan, N., Martinkillias, P., Wyssstoeckle, S., Honegger, A., Zangemeisterwittke, U., & Plückthun, A. (2011). DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. Journal of Molecular Biology, 413, 826–843.CrossRefGoogle Scholar
  64. 64.
    Dreier, B., Mikheeva, G., Belousova, N., Parizek, P., Boczek, E., Jelesarov, I., Forrer, P., Plückthun, A., & Krasnykh, V. (2011). Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. Journal of Molecular Biology, 405, 410–426.CrossRefGoogle Scholar
  65. 65.
    Zellweger, F., Gasser, P., Brigger, D., Buschor, P., Vogel, M., & Eggel, A. (2017). A novel bispecific DARPin targeting FcgammaRIIB and FcepsilonRI-bound IgE inhibits allergic responses. Allergy, 72, 1174–1183.CrossRefGoogle Scholar
  66. 66.
    Chen, F., Zhao, Y., Liu, M., Li, D., Wu, H., Chen, H., Zhu, Y., Luo, F., Zhong, J., Zhou, Y., Qi, Z., & Zhang, X. L. (2010). Functional selection of hepatitis C virus envelope E2-binding Peptide ligands by using ribosome display. Antimicrobial Agents and Chemotherapy, 54, 3355–3364.CrossRefGoogle Scholar
  67. 67.
    Cheng, H., Chen, Y., Yang, Y., Chen, X., Guo, X., & Du, A. (2015) Characterization of anti-citrinin specific ScFvs selected from non-immunized mouse splenocytes by eukaryotic ribosome display. PLoS ONE, 10, e0131482.CrossRefGoogle Scholar
  68. 68.
    Kanamori, T., Fujino, Y., & Ueda, T. (2014). PURE ribosome display and its application in antibody technology. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1844, 1925–1932.CrossRefGoogle Scholar
  69. 69.
    Gu, L. C., Li, C., Aach, J., Hill, D. E., Vidal, M., & Church, G. M. (2014). Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature, 515, 554–557.CrossRefGoogle Scholar
  70. 70.
    Li, Z., Uzawa, T., Zhao, H., Luo, S. C., Yu, H. H., Kobatake, E., & Ito, Y. (2013). In vitro selection of peptide aptamers using a ribosome display for a conducting polymer. Journal of Bioscience & Bioengineering, 117, 501–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruowei Li
    • 1
    • 2
    • 3
  • Guangbo Kang
    • 1
    • 2
    • 3
  • Min Hu
    • 1
    • 2
    • 3
  • He Huang
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biochemical Engineering, School of Chemical Engineering & TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Chemical Science and EngineeringTianjinPeople’s Republic of China

Personalised recommendations