Advertisement

Molecular Biotechnology

, Volume 61, Issue 1, pp 32–52 | Cite as

The Research Progress of Chalcone Isomerase (CHI) in Plants

  • Yan-chao Yin
  • Xiao-dong Zhang
  • Zhi-qiang Gao
  • Ting Hu
  • Ying LiuEmail author
Review
  • 127 Downloads

Abstract

Chalcone isomerase (CHI) is the second rate-limiting and the first reported enzyme involved in the biosynthetic pathway of flavonoids. It catalyzes the intramolecular cyclization reaction, converting the bicyclic chalcone into tricyclic (2S)-flavanone. In this paper, we obtained and analyzed 916 DNA sequences, 1310 mRNA sequences, and 2403 amino acid sequences of CHI registered in NCBI by Jan 2018. The full length of CHI DNA sequences ranges from 218 to 3758 bp, CHI mRNA sequences ranges from 265 to 1436 bp, and CHI amino acid sequences ranges from 35 to 465 amino acid residues. Forty representative species were selected from each family to construct the maximum likelihood tree and analyze the evolutionary relationship. According to the medicinal and agricultural use, 13 specific species were selected, and their physicochemical properties were analyzed. The molecular weight of CHI ranges from 23 to 26 kD, and the isoelectric point of CHI ranges from 4.93 to 5.85. All the half-life periods of CHI are 30 h in mammalian reticulocytes in vitro, 20 h in yeast, and 10 h in E. coli in vivo, theoretically. The consistency of the 13 CHI amino acid sequences is 63.55%. According to the similarity between each sequence, we selected four CHI sequences of Paeonia suffruticosa, Paeonia lactiflora, Taxus wallichiana, and Tradescantia hirsutiflora for secondary structure, three-dimensional protein models, conserved domains, transmembrane structure, and signal peptide prediction analysis. It was found that CHI sequences of Paeonia suffruticosa and Paeonia lactiflora owned a higher similarity; they both share the template 4doi.1.A. The four CHI all have no signal peptides, and they exert their activities in cytoplasm. Then, PubMed, Web of Science, Science Direct, and Research Gate were used as information sources through the search terms ‘chalcone isomerase’, ‘biosynthesis’, ‘expression’, and their combinations to get the latest and comprehensive information of CHI, mainly from the year 2010 to 2018. More than 300 papers were searched and 116 papers were reviewed in the present work. We summarized the classification of CHI, catalytic reaction mechanism of CHI, and progress of genetic engineering regarding CHI clone, expression, and exogenous stimulator regulation. This paper will lay a foundation for further studies of CHI and other functional genes involved in flavonoids biosynthetic pathway.

Keywords

Chalcone isomerase Flavonoids Flavonoid biosynthetic pathway Bioinformatic analysis 

Abbreviations

CHI

Chalcone isomerase

CHS

Chalcone synthase

IFS

Isoflavone synthase

F3H

Flavanone 3-β-hydroxyalse

FLS

Flavonol synthase

RT-PCR

Reverse transcription PCR

RNAi

RNA interference

MeJA

Methyl jasmonate MJ

qRT-PCR

Quantitative real time polymerase chain reaction

N-J

Neighbor-joining

Notes

Funding

Funding was provided by The National Natural Science Foundation of China (Grant No. 81503181).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no competing interests.

References

  1. 1.
    Bennett, R. N., & Wallsgrove, R. M. (2010). Secondary metabolites in plant defence mechanisms. New Phytologist, 127, 617–633.Google Scholar
  2. 2.
    Kuang, H. X. (2003). Chemical of traditional Chinese medicine (TCM). Beijing: China Traditional Chinese Medicine Press.Google Scholar
  3. 3.
    Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 96, 67–202.Google Scholar
  4. 4.
    Sánchez, I., Gómez-Garibay, F., Taboada, J., & Ruiz, B. H. (2015). Antiviral effect of flavonoids on the Dengue virus. Phytotherapy Research, 14, 89–92.Google Scholar
  5. 5.
    Dobrzyńska, M. M. (2015). Modulating effects of flavonoids on food mutagens in human blood and sperm samples in the comet assay. Teratogenesis, Carcinogenesis, and Mutagenesis, 17, 45–58.Google Scholar
  6. 6.
    Sudheesh, S., Sandhya, C., Sarah, K. A., & Vijayalakshmi, N. R. (2015). Antioxidant activity of flavonoids from Solanum melongena. Phytotherapy Research, 13, 393–396.Google Scholar
  7. 7.
    Chen, H., Pu, J., Liu, D., Yu, W., Shao, Y., Yang, G. et al. (2016). Anti-inflammatory and antinociceptive properties of flavonoids from the fruits of Black Mulberry (Morus nigra L.). PLoS ONE, 11, e0153080.Google Scholar
  8. 8.
    Pan, M. H., Lai, C. S., & Ho, C. T. (2010). Anti-inflammatory activity of natural dietary flavonoids. Food & Function, 1, 15–31.Google Scholar
  9. 9.
    Kassim, M., Achoui, M., Mustafa, M. R., Mohd, M. A., & Yusoff, K. M. (2010). Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutrition Research, 30, 650–659.Google Scholar
  10. 10.
    Zhang, F. P., Jin, W. U., & Li, Q. N. (2016). Extraction and anti-oxidation activity of flavonoids from Artocarpus heterophyllus Seeds. Storage & Process, 16, 55–60.Google Scholar
  11. 11.
    Tay, W. M., Silva, G. F. Z. D., & Ming, L. J. (2013). Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: not just serving as suicide antioxidants. Inorganic Chemistry, 52, 679–690.Google Scholar
  12. 12.
    Ren, Q. R., Li, J., Wang, Y. N., Gou, X., Xin, W. Y., Ma, D. W., et al. (2017). In vitro antioxidant activity and anti-tumor activity of total flavonoids from Elsholtzia densa Benth. Natural Product Research and Development, 29, 14–21.Google Scholar
  13. 13.
    Shi, X., Liu, D., Zhang, J., Hu, P., Shen, W., Fan, B., et al. (2016). Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complementary and Alternative Medicine, 16, 245–253.Google Scholar
  14. 14.
    Deng, X. K., Zhao, X. P., Zhou, L., Jiang, J., Yin, W., & Chen, L. (2014). Anti-tumor effects of flavonoids from the ethnic medicine Docynia delavayi (Franch.) Schneid. and its possible mechanism. Journal of Medicinal Food, 17, 787–794.Google Scholar
  15. 15.
    Zhan, J., Su, X. S., Liu, M., Zhan, K., Zhang, C., & Zhao, G. (2017). Effects of diet added alfalfa flavonoids on blood biochemical indexes, oxidation resistance and immunity of dairy cow. Journal of China Agricultural University, 22, 66–74.Google Scholar
  16. 16.
    Yaghoubi, S. M. J., Ghorbani, G. R., Rahmani, H. R., & Nikkhah, A. (2010). Growth, weaning performance and blood indicators of humoral immunity in Holstein calves fed supplemental flavonoids. Journal of Animal Physiology and Animal Nutrition, 92, 456–462.Google Scholar
  17. 17.
    Tang, W. Z., Wang, Y. A., Gao, T. Y., Xiao-Jing, W. A. N. G., & Yun-Xue, Z. H. A. O. (2017). Identification of C-geranylated flavonoids from Paulownia catalpifolia Gong Tong fruits by HPLC-DAD-ESI-MS/MS and their anti-aging effects on 2BS cells induced by H2O2. Chinese Journal of Natural Medicines, 15, 384–391.Google Scholar
  18. 18.
    Jadoon, S., Karim, S., Asad, M. H. H. B., Akram, M. R., Kalsoom Khan, A., Malik, A. et al. (2015) Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxidative Medicine and Cellular Longevity.  https://doi.org/10.1155/2015/709628.Google Scholar
  19. 19.
    Chen, Y., Gong, X., Li, G., Lin, M., Huo, Y., Li, S. et al. (2016). Effects of dietary alfalfa flavonoids extraction on growth performance, organ development and blood biochemical indexes of Yangzhou geese aged from 28 to 70 days. Archives of Animal Nutrition, 2, 318–322.Google Scholar
  20. 20.
    Gong, T., Wang, C. F., Yuan, J. R., Li, Y., Gu, J. F., Zhao, B. J. et al. (2015) Inhibition of tumor growth and immunomodulatory effects of flavonoids and scutebarbatines ofScutellaria barbata D. Don in lewis-bearing C57BL/6 mice. Evidence-Based Complementary and Alternative Medicine.  https://doi.org/10.1155/2015/630760.Google Scholar
  21. 21.
    Santos, B. L., Oliveira, M. N., Coelho, P. L. C., Pitanga, B. P., da Silva, A. B., Adelita, T. et al. (2015). Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chemico-Biological Interactions, 242, 123–138.Google Scholar
  22. 22.
    Patwardhan, J., & Bhatt, P. (2016). Flavonoids derived from Abelmoschus esculentusattenuates UV-B induced cell damage in human dermal fibroblasts through Nrf2-ARE pathway. Pharmacognosy Magazine, 12, 129–138.Google Scholar
  23. 23.
    Lan, L., Iii, D. C. G., & Mcclure, J. W. (2010). Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiologia Plantarum, 93, 725–733.Google Scholar
  24. 24.
    Huck, C. W., Stecher, G., Ahrer, W., Stöggl, W. M., Buchberger, W., & Bonn, G. K. et al. (2015). Analysis of three flavonoids by CE-UV and CE-ESI-MS. determination of naringenin from a phytomedicine. Journal of Separation Science, 25, 903–908.Google Scholar
  25. 25.
    Masek, A. (2015). Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers, 7, 1125–1144.Google Scholar
  26. 26.
    Apel, L., Kammerer, D. R., Stintzing, F. C., & Spring, O. (2017). Comparative metabolite profiling of triterpenoid saponins and flavonoids in flower color mutations of Primula veris L. International Journal of Molecular Sciences, 18, 153–166.Google Scholar
  27. 27.
    Yasumasa, M., Kyoko, T., Masako, F., Ishiguro, K., Tanaka, Y., Nitasaka, E. et al. (2014). A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal, 78, 294–304.Google Scholar
  28. 28.
    Naoto, F., Tatsuya, Y., Li, Y., Kera, K., Furuhashi, E., Yamashita, S. et al. (2014). cDNA cloning and characterization of chalcone isomerase-fold proteins from snapdragon (Antirrhinum majus L.) flowers. Plant Biotechnology, 31, 105–114.Google Scholar
  29. 29.
    Wang, J. Y., Dai, H. F., Li, H. L., Guo, D., Mei, W. L., & Peng, S. Q. et al. (2015). Molecular and functional characterization of the chalcone synthase gene (DcCHS1) promoter in response to hormones. Plant Omics, 8, 398–404.Google Scholar
  30. 30.
    Schröder, G., Brown, J. W., & Schröder, J. (2010). Molecular analysis of resveratrol synthase. cDNA, genomic clones and relationship with chalcone synthase. European Journal of Biochemistry, 172, 161–169.Google Scholar
  31. 31.
    Braune, A., Engst, W., Elsinghorst, P. W., Furtmann, N., Bajorath, J., Gütschow, M., & Blaut, M. et al. (2016). Chalcone isomerase from Eubacterium ramuluscatalyzes the ring contraction of flavanonols. Journal of Bacteriology, 198, 2965–2974.Google Scholar
  32. 32.
    Yang, M., Li, J., Ye, C., & Liang, H. (2017). Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha. Biologia, 72, 753–763.Google Scholar
  33. 33.
    Hu, H. H., Jing, C. Q., Liu, R., Li, W. D., & Feng, H. G. (2015). Cloning and transformation analysis of isoflavone synthase gene into Minshan Trifolium pratense. Genetics and Molecular Research, 14, 9291–9297.Google Scholar
  34. 34.
    Jia, T., An, J., Liu, Z., Yu, B., & Chen, J. (2017). Salt stress induced soybean GmIFS1, expression and isoflavone accumulation and salt tolerance in transgenic soybean cotyledon hairy roots and tobacco. Plant Cell, Tissue and Organ Culture, 128, 469–477.Google Scholar
  35. 35.
    Zheng, S., Mao, Y. S., Zhang, T. G., & NIE, T. T. (2017) Cloning and expression analysis of F3H gene in Caragana korshinskii. Guihaia, 37, 723–733.Google Scholar
  36. 36.
    Akita, Y., Kitamura, S., Mikami, R., & Ishizaka, H. (2017). Identification of functional flavonol synthase, genes from fragrant wild cyclamen (Cyclamen purpurascens). Journal of Plant Biochemistry and Biotechnology, 8, 1–9.Google Scholar
  37. 37.
    Vu, T. T., Chan, Y. J., Nguyen, H. N., Lee, D., Lee, S. A., Kim, J. H. et al. (2015). Characterization of Brassica napus flavonol synthase involved in flavonol biosynthesis in Brassica napus L. Journal of Agricultural and Food Chemistry, 63, 7819–7825.Google Scholar
  38. 38.
    Shen, X., Martens, S., Chen, M., Li, D., Dong, J., & Wang, T. (2010). Cloning and characterization of a functional flavanone-3β-hydroxylase gene from Medicago truncatula. Molecular Biology Reports, 37, 3283–3289.Google Scholar
  39. 39.
    Park, H. M., Shin, S. H., Ko, J. M., Yi, G. H., Nam, M. H., Chung, Y. S. et al. (2004). Cloning and characterization of soybean IFS (isoflavone synthase) genes from Korean cultivar, Sinpaldalkong. European Journal of Biochemistry, 14, 4359–4366.Google Scholar
  40. 40.
    Li, M.,Wang, Y. H., Li, C. S., Hou, L., Zhao, C. Z., Zhao, S. Z., et al. (2013). Cloning and expression analysis of flavanone 3-hydroxylase gene, AhF3H, from Arachis hypogaea L. Shandong Academy of Agricultural Sciences, 45, 1–6.Google Scholar
  41. 41.
    Liu, L., Gregan, S., Winefield, C., & Jordan, B. (2014). From UVR8 to flavonol synthase: UV-B-induced geneexpression in Sauvignon blanc grape berry. Plant, Cell & Environment, 38, 905–919.Google Scholar
  42. 42.
    Han, Y., Ding, T., Su, B., & Jiang, H. (2016). Genome-wide identification, characterization and expression analysis of the chalcone synthase family in Maize. International Journal Of Molecular Sciences, 17, 161–176.Google Scholar
  43. 43.
    Han Y., Cao, Y., Jiang, H., & Ding, T. (2017). Genome-wide dissection of the chalcone synthase gene family inOryza sativa. Molecular Breeding, 37, 119–130.Google Scholar
  44. 44.
    Mckhann, H. I., Paiva, N. L., Dixon, R. A., & Hirsch, A. M. (1998). Expression of genes for enzymes of the flavonoid biosynthetic pathway in the early stages of the rhizobium-legume symbiosis. Advances in Experimental Medicine and Biology, 439, 45–54.Google Scholar
  45. 45.
    Ngaki, M. N., Louie, G. V., Philippe, R. N., Manning, G., Pojer, F., Bowman, M. E. et al. (2012). Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature, 485, 530–533.Google Scholar
  46. 46.
    Liu, X. M., Li, X. X., Na, Y., Wang L., Li X., Dong Y. et al. (2016). Construction of CHI gene expression vector of safflower and its transformation in Arabidopsis thaliana. Chinese Traditional Herbal Drugs, 47, 3279–3283.Google Scholar
  47. 47.
    Liu, C. Y., Zhao, A. C., & Li, J. (2013). Cloning and prokaryotic expression of chalcone isomerase gene from Mulberry (Morus alba). Scientia Silvae Sinicae, 49, 39–45.Google Scholar
  48. 48.
    Najid, N. M., Che, R. C. M. Z., et al. (2016) Analysis of the relationship between chalcone isomerase gene expression level and rutin production in Ficus deltoidea var. deltoidea and F. deltoidea var. angustifolia [C] Ukm Fst Postgraduate Colloquium: Universiti Kebangsaan Malaysia, Faculty of Science & Technology Postgraduate Colloquium. AIP Publishing LLC, pp. 1–8.Google Scholar
  49. 49.
    Zhao, D., Tao, J., Han, C., & Ge, J. et al. (2012). Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Molecular Biology Reports, 39, 11263–11275.Google Scholar
  50. 50.
    Zhang, H. C., Liu, J. M., Lu, H. Y., & Gao, S. L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch. by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports, 28, 1205–1213.Google Scholar
  51. 51.
    Lan, X., Quan, H., Xia, X., Yin, W., & Zheng, W. (2016). Molecular cloning and transgenic characterization of the genes encoding chalcone synthase and chalcone isomerase from Tibetan herbal plant Mirabilis himalaica. Biotechnology and Applied Biochemistry, 63, 419–426.Google Scholar
  52. 52.
    Wang, J., Zhang, R., Xu, Y., Zhou, H., Wang, B., & Li, S. (2008). Genistein inhibits the development of atherosclerosis via inhibiting NF-B and VCAM-1 expression in LDLR knockout mice. Canadian Journal of Physiology and Pharmacology, 86, 777–784.Google Scholar
  53. 53.
    Bode, A. M., & Dong, Z. (2015). Chemopreventive effects of licorice and its components. Current Pharmacology Reports, 1, 60–71.Google Scholar
  54. 54.
    Yang, R., Wang, L. Q., Yuan, B. C., & Liu, Y. (2015). The pharmacological activities of Licorice. Planta Medica, 81, 1654–1669.Google Scholar
  55. 55.
    Chandrasekaran, C. V., Deepak, H. B., Thiyagarajan, P., Kathiresan, S., Sangli, G. K., Deepak, M. et al. (2011) Dual inhibitory effect of Glycyrrhiza glabra (GutGardâ) on COX and LOX products. Phytomedicine, 18, 278–284.Google Scholar
  56. 56.
    Wu, T. Y., Khor, T. O., Saw, C. L., Loh, S. C., Chen, A. I., Lim, S. S. et al. (2011). Anti-inflammatory/anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis. The AAPS Journal, 13, 1–13.Google Scholar
  57. 57.
    Wang, L. Q., Yang, R., Yuan, B. C., Liu, Y., & Liu, C. (2015). The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharmaceutica Sinica B, 5, 310–315.Google Scholar
  58. 58.
    Adianti, M., Aoki, C., Komoto, M., Deng, L., Shoji, I., Wahyuni, T. S. et al. (2014). Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiology and Immunology, 58, 180–187.Google Scholar
  59. 59.
    Lai, C. C., Wu, W. C., Chuang, L. H., Yeung, L., Wei, W., & Yang, K. J. (2005). Quantitative grading of preretinal neovascularization in adult rats. Acta Ophthalmologica Scandinavica, 83, 590–594.Google Scholar
  60. 60.
    Drabaek, H., Petersen, J. R., Wïnberg, N., Hansen, K. F., & Mehlsen, J. (1996). The effect of Ginkgo biloba extract in patients with intermittent claudication. Ugeskr Laeger, 158, 3928–3931.Google Scholar
  61. 61.
    Cao, J., Tong, C., Liu, Y., Wang, J., Ni, X., & Xiong, M. M. (2017). Ginkgetin inhibits growth of breast carcinoma via regulating MAPKs pathway. Biomedicine & Pharmacotherapy, 96, 450–458.Google Scholar
  62. 62.
    Pan, L. L., Wu, W. J., Zheng, G. F., Han, X. Y., He, J. S., & Cai, Z. (2017). Ginkgetin inhibits proliferation of human leukemia cells via the TNF-α signaling pathway. Zeitschrift für Naturforschung, 72, 441–447.Google Scholar
  63. 63.
    Jiang, W., Yin, Q., Wu, R., Zheng, G., Liu, J., Dixon, R. A., & Pang, Y. (2015). Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. Journal of Experimental Botany, 66, 7165–7179.Google Scholar
  64. 64.
    He, F., & Pan, Y. (2017). Purification and characterization of chalcone isomerase from fresh-cut Chinese water-chestnut. LWT-Food Science and Technology, 79, 402–409.Google Scholar
  65. 65.
    Wang, H. L., Wang, W., Yang, A. L., Sun, L., Zhang, G., Wang, X., et al. (2017). The expression and subcellular localization of chalcone isomerase in developing Grape berries. Acta Horticulturae Sinica, 44, 1477–1485.Google Scholar
  66. 66.
    Guan, C., Song, X., Ji, J., Li, X., Jin, C., Guan, W., et al. (2014). Salicylic acid treatment enhances expression of chalcone isomerase gene and accumulation of corresponding flavonoids during fruit maturation of Lycium chinense. European Food Research and Technology, 239, 857–865.Google Scholar
  67. 67.
    Wang, Y., Li, J., & Xia, R. (2010). Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow). Scientia Horticulturae-Amsterdam, 125, 110–116.Google Scholar
  68. 68.
    Guo, J., Zhou, W., Lu, Z., Li, H., Li, H., & Gao, F. (2015). Isolation and functional analysis of chalcone isomerase gene from fpurple-Fleshed sweet potato. Plant Molecular Biology Reporter, 33, 1451–1463.Google Scholar
  69. 69.
    Mehdy, M. C., & Lamb, C. J. (1988). Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. The EMBO Journal, 86, 1527–1533.Google Scholar
  70. 70.
    Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., & Ayabe, S. I. (2003). A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy (iso) flavonoids in Lotus japonicus. Plant Physiology, 131, 941–951.Google Scholar
  71. 71.
    Han, X. J. (2015). Biochemical characterization of key enzymes in flavonoids biosynthesis pathway from Liverworts. Jinan: Shangdong University.Google Scholar
  72. 72.
    Gensheimer, M., & Mushegian, A. (2004). Chalcone isomerase family and fold: No longer unique to plants. Protein Science, 13, 540–544.Google Scholar
  73. 73.
    Ralston, L., Subramanian, S., Matsuno, M., & Yu, O. (2005). Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerase. Plant Physiology, 137, 1375–1388.Google Scholar
  74. 74.
    Li, L. L., Cheng, H., & Xu, F. (2008). Progress of chalcone isomerase in plants. Letters in Biotechnology, 19, 935–937.Google Scholar
  75. 75.
    Jez, J. M., & Noel, J. P. (2002). Reaction mechanism of chalcone isomerase pH dependence, diffusion control, and product binding differences. Journal of Biological Chemistry, 277, 1361–1369.Google Scholar
  76. 76.
    Cheng, H., Li, L., Cheng, S., Cao, F., Wang, Y., & Yuan, H. (2011). Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Reports, 30, 49–62.Google Scholar
  77. 77.
    Yang, Z., Liu, K. L., Peng, J. J., Qin, Y., Zheng, G.-y., Ming, J. et al. (2016). Cloning and expression analysis of chalcone isomerase gene from Anthurium andraeanum. Acta Horticulturae Sinica, 43, 1402–1410.Google Scholar
  78. 78.
    Qin, J. C., Zhu, L., Gao, M. J., Wu, X., Pan, H. Y., Zhang, Y. S., et al. (2011). Cloning and functional characterization of a chalcone isomerase from Trigonellafoenum graecum L. Planta Medica, 77, 765–770.Google Scholar
  79. 79.
    Fatemeh, K.A., Abdolreza, B., & Nasrin, M. (2016) Analysis of chalcone synthase and chalcone isomerase gene expression in pigment production pathway at different flower colors of Petunia hybrida. Journal of Cell and Molecular Research, 8, 8–14.Google Scholar
  80. 80.
    Li, F. X., Jin, Z. P., Zhao, D. X., Cheng, L. Q., Fu, C. X., & Ma, F. (2006). Overexpression of theSaussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry, 67, 553–560.Google Scholar
  81. 81.
    Kawasaki, T., Koeduka, T., Sugiyama, A., Sasaki, K., Linley, P. J., Shitan, N. et al. (2014). Metabolic engineering of flavonoids with prenyltransferase and chalcone isomerase genes in tomato fruits. Plant Biotechnology Journal, 31, 567–571.Google Scholar
  82. 82.
    Chen, C., Pei, J., Wu, Y., Ren, C. X., Chen, J., Liu, W., et al. (2016). Cloning, bioinformatic analysis of chalcone-flavonone isomerase gene (CHI) and relationship between expression of CHI and accumulation of HSYA in Carthamus tinctorius. Journal of Chinese Medicinal Materials, 39, 499–503.Google Scholar
  83. 83.
    Zamora, P., Pardo, A., Fierro, A., Prieto, H., & Zúñiga, G. E. (2013). Molecular characterization of the chalcone isomerase gene family in Deschampsia antarctica. Polar Biology, 36, 1269–1280.Google Scholar
  84. 84.
    Wu, Y. Q., Zhu, M. Y., Yu, J., Zhao, D. Q., & Jun, T. A. O. (2018). Molecular characterization of chalcone isomerase (CHI) regulating flower color in herbaceous peony (Paeonia lactiflora Pall.). Journal of Integrative Agriculture, 17, 122–129.Google Scholar
  85. 85.
    Luo, X. P., Bai, Y. C., Fei, G., Li, C. L., Chen, H., & Wu, Q. (2013). Gene cloning and expression level of chalcone isomerase during florescence and content of flavonoids in Fagopyrum dibotrys. Chinese Traditional Herbal Drugs, 44, 1481–1485.Google Scholar
  86. 86.
    Korsangruang, S., Yamazaki, M., Saito, K., & Prathanturarug, S. (2010). Cloning of gene encoding chalcone isomerase (CHI) from P. candollei and expression of genes involved isoflavonoid biosynthesis pathway in seedling plants. Planta Medica, 76, 1197–1197.Google Scholar
  87. 87.
    Wang, H., Hu, T., Huang, J., Lu, X., Huang, B., & Zheng, Y. (2013). The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance. International Journal of Molecular Sciences, 14, 8775–8786.Google Scholar
  88. 88.
    Lan, X., Quan, H., Xia, X., Yin, W., & Zheng, W. (2016). Molecular cloning and transgenic characterization of the genes encoding chalcone synthase and chalcone isomerase from the Tibetan herbal plant Mirabilis himalaica. Biotechnology & Applied Biochemistry, 63, 419–426.Google Scholar
  89. 89.
    Zhou, L., Wang, Y., Ren, L., Shi, Q., Zheng, B., Miao, K., et al. (2014). Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell, Tissue and Organ Culture, 116, 285–295.Google Scholar
  90. 90.
    Han, E. H., Jisun, L., Jaewoong, L., Chung, I. S., & Lee, Y. H. (2011). Transgenic lettuce expressing chalcone isomerase gene of Chinese cabbage increased levels of flavonoids and polyphenols. Wonye kwahak kisulchi = Korean Journal of Horticultural Science and Technology, 29, 467–473.Google Scholar
  91. 91.
    Nishihara, M., Nakatsuka, T., & Yamamura, S. (2005). Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Letters, 579, 6074–6078.Google Scholar
  92. 92.
    Keykha, F., Bagheri, A., Moshtaghi, N., Bahrami, A. R., & Sharifi, A. (2016). RNAi-induced silencing in floral tissues of Petunia hybridaby agroinfiltration: A rapid assay for chalcone isomerase gene function analysis. Cellular and Molecular Biology, 62, 26–31.Google Scholar
  93. 93.
    Lim, W., & Li, J. (2016) Co-expression of onion chalcone isomerase, in Del/Ros1—expressing tomato enhances anthocyanin and flavonol production. Plant Cell, Tissue and Organ Culture, 128, 113–124.Google Scholar
  94. 94.
    Sun, P., Zhang, Z. L., Zhu, Q. F., Ping, X.I., Yu-ling, L. I., Zhongxiong, L. A., et al. (2018). Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis). Journal of Integrative Agriculture, 17, 1154–1164.Google Scholar
  95. 95.
    Fujino, N., Yamazaki, T., & Li, Y. (2014). cDNA cloning and characterization of chalcone isomerase-fold proteins from snapdragon (Antirrhinum majus L.) flowers. Plant Biotechnology, 31, 105–114.Google Scholar
  96. 96.
    Suita, K., Kiryu, T., Sawada, M., Mitsui, M., Nakagawa, M., Kanamaru, K., et al. (2009). Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta, 229, 403–413.Google Scholar
  97. 97.
    Morita, Y., Takagi, K., Fukuchi-Mizutani, M., Ishiguro, K., Tanaka, Y., Nitasaka, E., et al. (2014). A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant Journal for Cell & Molecular Biology, 78, 294.Google Scholar
  98. 98.
    Lou, Q., Liu, Y., Qi, Y., Jiao, S., Tian, F., Jiang, L., et al. (2014). Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. Journal of Experimental Botany, 65, 3157.Google Scholar
  99. 99.
    Yao, H., Li, C., Zhao, H., Zhao, J., Chen, H., Bu, T., et al. (2016) Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat (Fagopyrum tataricum, Garetn.). Progress in Biophysics & Molecular Biology, 124, 49.Google Scholar
  100. 100.
    Han, S., Wu, Z., Jin, Y., Yang, W., & Shi, H. (2015) RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba. L.). Tree Genetics & Genomes, 11, 37.Google Scholar
  101. 101.
    Chao, F., Ming, C., Xu, C. J., Bai, L., Yin, X. R., Li, X., et al. (2012). Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 13, 19.Google Scholar
  102. 102.
    Wang, Y., Hua, W., Wang, J., Hannoufa, A., Xu, Z., & Wang, Z. (2013) Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Molecular Genetics & Genomics, 288, 131.Google Scholar
  103. 103.
    Chen, H., Feng, Y., Wang, L., Yonezawa, T., Crabbe, M. J. C., Zhang, X., et al. (2015) Transcriptome profiling of the UV-B stress response in the desert shrub Lycium ruthenicum. Molecular Biology Reports, 42, 639.Google Scholar
  104. 104.
    Zhu, J. H., Cao, T. J., Dai, H. F., Li, H. L., Guo, D., Mei, W. L., et al. (2016). De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon’s blood. Scientific Reports, 6, 38315–38126.Google Scholar
  105. 105.
    Li, C. F., Zhu, Y., Yu, Y., Zhao, Q. Y., Wang, S. J., Wang, X. C., et al. (2015). Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics, 16, 560–581.Google Scholar
  106. 106.
    Liu, Z. H., Liu, Y. X., Pu, Z. E., Wang, J., Zheng, Y., Li, Y., et al. (2013). Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 35, 1765–1780.Google Scholar
  107. 107.
    Mitra, S., & Baldwin, I. T. (2014). RuBPCase activase (RCA) mediates growth-defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in Nicotiana attenuata. New Phytologist, 201, 1385–1395.Google Scholar
  108. 108.
    Tuan, P. A., Kim, Y. S., Kim, Y., Thwe, A. A., Li, X., Park, C. H., et al. (2016). Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi Journal of Biological Sciences.  https://doi.org/10.1016/j.sjbs.2016.08.011.Google Scholar
  109. 109.
    Concha, C. M., Figueroa, N. E., Poblete, L. A., Oñate, F. A., Schwab, W., & Figueroa, C. R. (2013). Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensisfruit. Plant Physiology and Biochemistry, 70, 433–444.Google Scholar
  110. 110.
    Torres, M., & Corchete, P. (2016). Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum. Journal of Plant Physiology, 192, 111–117.Google Scholar
  111. 111.
    Ge, L., Liu, J. Z., Wong, W. S., Hsiao, W. L. W., Chong, K., Xu, Z. K., et al. (2000). Identification of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant, Cell & Environment, 23, 1169–1182.Google Scholar
  112. 112.
    Subburaj, S., Ha, H. J., Park, N., Choi, S. H., & Lee, G. J. (2017). Chalcone isomerase-like, genes in Tradescantia BNL4430: identification, molecular characterization, and differential expression profiles under γ-radiation stress. Journal of Plant Biochemistry and Biotechnology, 26, 330–345.Google Scholar
  113. 113.
    Liu, Y., Zhu, X. Q., Li, W. D., Hao, W. E. N., & Chun-Sheng, L. I. U. (2015). Enhancing ergosterol production in Pichia pastoris, GS115 by overexpressing squalene synthase gene from Glycyrrhiza uralensis. Chinese Journal of Natural Medicines, 13, 338–345.Google Scholar
  114. 114.
    Zhang, X. D., Zhou, S., Yin, Y. C., Hu, T., Gao, Z.-q., Han, Y.-l., et al. (2018) Analysis on the correlation between chalcone synthase gene polymorphism and content of liquiritin in licorice [J/OL]. Acta Pharmaceutica Sinica.  https://doi.org/10.16438/j.0513-4870.2017-1245.Google Scholar
  115. 115.
    Liu, Y., Zhao, S., Wang, J., Zhao, C., Guan, H., Hou, L., et al. (2015). Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (Arachis hypogaea L.). Development Genes & Evolution, 225, 1–10.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yan-chao Yin
    • 1
  • Xiao-dong Zhang
    • 1
  • Zhi-qiang Gao
    • 1
  • Ting Hu
    • 1
  • Ying Liu
    • 1
    Email author
  1. 1.School of Life SciencesBeijing University of Chinese MedicineBeijingChina

Personalised recommendations