Advertisement

Expression, Purification, and Characterization of Recombinant Human α1-Antitrypsin Produced Using Silkworm–Baculovirus Expression System

  • Yoshiki Morifuji
  • Jian Xu
  • Noriko Karasaki
  • Kazuhiro Iiyama
  • Daisuke Morokuma
  • Masato Hino
  • Akitsu Masuda
  • Takumi Yano
  • Hiroaki Mon
  • Takahiro Kusakabe
  • Jae Man Lee
Original Paper

Abstract

Human α1-antitrypsin (AAT) is the most abundant serine proteinase inhibitor (serpin) in the human plasma. Commercially available AAT for the medications of deficiency of α1-antitrypsin is mainly purified from human plasma. There is a high demand for a stable and low-cost supply of recombinant AAT (rAAT). In this study, the baculovirus expression vector system using silkworm larvae as host was employed and a large amount of highly active AAT was recovered from the silkworm serum (~ 15 mg/10 ml) with high purity. Both the enzymatic activity and stability of purified rAAT were comparable with those of commercial product. Our results provide an alternative method for mass production of the active rAAT in pharmaceutical use.

Keywords

Baculovirus expression vector system Serpin α1-Antitrypsin Recombinant protein Silkworm 

Notes

Acknowledgements

The NIAS-Bm-oyanagi2 cell line for propagation of recombinant BmNPVs was kindly provided by Dr. Imanishi (National Institute of Agrobiological Sciences, Japan). The MALDI-TOF MS was kindly supported by Center for Advanced Instrumental and Educational Supports (Faculty of Agriculture, Kyushu University).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12033_2018_127_MOESM1_ESM.pdf (127 kb)
Supplemental Fig. 1 O-linked glycans analysis of rAAT. rAATs were incubated with/without O-glycosidase and analyzed by 10 % SDS-PAGE. Fetuin was used as a control. M: molecular mass markers; 1: Fetuin; 2: Fetuin incubated with O-glycosidase and Neuraminidase; 3: T3 rAAT; 4: T3 rAAT incubated with O-glycosidase; 5: T3ΔPE3P rAAT; 6: T3ΔPE3P rAAT incubated with O-glycosidase. (PDF 127 KB)

References

  1. 1.
    Brantly, M., Nukiwa, T., & Crystal, R. G. (1988). Molecular basis of alpha-1-antitrypsin deficiency. The American Journal of Medicine, 84(6A), 13–31.CrossRefGoogle Scholar
  2. 2.
    Levina, V., Dai, W., Knaupp, A. S., Kaiserman, D., Pearce, M. C., Cabrita, L. D., et al. (2009). Expression, purification and characterization of recombinant Z alpha(1)-antitrypsin—the most common cause of alpha(1)-antitrypsin deficiency. Protein Expression and Purification, 68(2), 226–232.  https://doi.org/10.1016/j.pep.2009.06.011.CrossRefPubMedGoogle Scholar
  3. 3.
    Huangfu, C., Zhang, J., Ma, Y., Jia, J., Lv, M., Zhao, X., & Zhang, J. (2017). New process for purifying high purity α1-antitrypsin from Cohn Fraction IV by chromatography: A promising method for the better utilization of plasma. Journal of Chromatography B, 1046, 156–164.  https://doi.org/10.1016/j.jchromb.2017.01.044.CrossRefGoogle Scholar
  4. 4.
    Fregonese, L., & Stolk, J. (2008). Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet Journal of Rare Diseases, 3(1), 16.  https://doi.org/10.1186/1750-1172-3-16.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Reh, G., Nerli, B., & Picó, G. (2002). Isolation of alpha-1-antitrypsin from human plasma by partitioning in aqueous biphasic systems of polyethyleneglycol–phosphate. Journal of Chromatography B, 780(2), 389–396.  https://doi.org/10.1016/S1570-0232(02)00624-4.CrossRefGoogle Scholar
  6. 6.
    Kovac, S., Yang, X., Huang, F., Hixson, D., & Josic, D. (2008). Proteomics as a tool for optimization of human plasma protein separation. Journal of Chromatography A, 1194(1), 38–47.  https://doi.org/10.1016/j.chroma.2008.04.026.CrossRefPubMedGoogle Scholar
  7. 7.
    Buchacher, A., & Iberer, G. (2006). Purification of intravenous immunoglobulin G from human plasma–aspects of yield and virus safety. Biotechnology Journal, 1(2), 148–163.  https://doi.org/10.1002/biot.200500037.CrossRefPubMedGoogle Scholar
  8. 8.
    Glynn, S. A., Busch, M. P., Dodd, R. Y., Katz, L. M., Stramer, S. L., Klein, H. G., et al. (2012). Emerging infectious agents and the nation’s blood supply: Responding to potential threats in the 21st century. Transfusion, 53(2), 438–454.  https://doi.org/10.1111/j.1537-2995.2012.03742.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tsutsui, Y., Cruz Dela, R., & Wintrode, P. L. (2012). Folding mechanism of the metastable serpin α1-antitrypsin. Proceedings of the National Academy of Sciences, 109(12), 4467–4472.  https://doi.org/10.1073/pnas.1109125109.CrossRefGoogle Scholar
  10. 10.
    Karnaukhova, E., Ophir, Y., & Golding, B. (2006). Recombinant human alpha-1 proteinase inhibitor: Towards therapeutic use. Amino Acids, 30(4), 317–332.  https://doi.org/10.1007/s00726-005-0324-4.CrossRefPubMedGoogle Scholar
  11. 11.
    Boaglio, A., Bassani, G., Picó, G., & Nerli, B. (2006). Features of the milk whey protein partitioning in polyethyleneglycol-sodium citrate aqueous two-phase systems with the goal of isolating human alpha-1 antitrypsin expressed in bovine milk. Journal of Chromatography B, 837(1–2), 18–23.  https://doi.org/10.1016/j.jchromb.2006.03.049.CrossRefGoogle Scholar
  12. 12.
    Jha, S., Agarwal, S., Sanyal, I., & Amla, D. V. (2016). Single-step purification and characterization of a recombinant serine proteinase inhibitor from transgenic plants. Applied Biochemistry and Biotechnology, 179(2), 220–236.  https://doi.org/10.1007/s12010-016-1989-8.CrossRefPubMedGoogle Scholar
  13. 13.
    Curtis, H., Sandoval, C., Oblin, C., Difalco, M. R., & Congote, L. F. (2002). Insect cell production of a secreted form of human α1-proteinase inhibitor as a bifunctional protein which inhibits neutrophil elastase and has growth factor-like activities. Journal of Biotechnology, 93(1), 35–44.  https://doi.org/10.1016/S0168-1656(01)00380-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang, T.-K., Plesha, M. A., Falk, B. W., Dandekar, A. M., & McDonald, K. A. (2009). Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnology and Bioengineering, 102(2), 508–520.  https://doi.org/10.1002/bit.22061.CrossRefPubMedGoogle Scholar
  15. 15.
    Agarwal, S., Jha, S., Sanyal, I., & Amla, D. V. (2010). Expression and purification of recombinant human α1-proteinase inhibitor and its single amino acid substituted variants in Escherichia coli for enhanced stability and biological activity. Journal of Biotechnology, 147(1), 64–72.  https://doi.org/10.1016/j.jbiotec.2010.03.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Arjmand, S., Bidram, E., Lotfi, A. S., Shamsara, M., & Mowla, S. J. (2011). Expression and purification of functionally active recombinant human alpha 1-antitrypsin in methylotrophic yeast Pichia pastoris. Avicenna Journal of Medical Biotechnology, 3(3), 127–134.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang, L., Shi, J., Jiang, D., Stupak, J., Ou, J., Qiu, Q., et al. (2013). Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. Journal of Biotechnology, 164(2), 300–308.  https://doi.org/10.1016/j.jbiotec.2013.01.008.CrossRefGoogle Scholar
  18. 18.
    Lee, K. J., Lee, S. M., Gil, J. Y., Kwon, O., Kim, J. Y., Park, S. J., et al. (2013). N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconjugate Journal, 30(5), 537–547.  https://doi.org/10.1007/s10719-012-9453-7.CrossRefPubMedGoogle Scholar
  19. 19.
    Chotirmall, S. H., Al-Alawi, M., McEnery, T., & McElvaney, N. G. (2015). Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: Safety, tolerability, and patient outcomes. Therapeutics and Clinical Risk Management, 11, 143–151.  https://doi.org/10.2147/TCRM.S51474.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee, J. M., Mon, H., Banno, Y., Iiyama, K., & Kusakabe, T. (2012). Bombyx mori strains useful for efficient recombinant protein production using a baculovirus vector. Journal of Biotechnology & Biomaterials.  https://doi.org/10.4172/2155-952X.S9-003.CrossRefGoogle Scholar
  21. 21.
    Kato, T., Kajikawa, M., Maenaka, K., & Park, E. Y. (2010). Silkworm expression system as a platform technology in life science. Applied Microbiology and Biotechnology, 85(3), 459–470.  https://doi.org/10.1007/s00253-009-2267-2.CrossRefPubMedGoogle Scholar
  22. 22.
    Mitsudome, T., Xu, J., Nagata, Y., Masuda, A., Iiyama, K., Morokuma, D., et al. (2014). Expression, purification, and characterization of endo-β-N-acetylglucosaminidase H using baculovirus-mediated silkworm protein expression system. Applied Biochemistry and Biotechnology, 172(8), 3978–3988.  https://doi.org/10.1007/s12010-014-0814-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Ono, C., Nakatsukasa, T., & Insect, Y. N. J. O. (2007). Construction of the BmNPV T3 bacmid system and its application to the functional analysis of BmNPV he65. Journal of Insect Biotechnology and Sericology, 76, 161–167.  https://doi.org/10.11416/jibs.76.3_161.CrossRefGoogle Scholar
  24. 24.
    Guo, X. Y., Guo, T. Q., Wang, S. P., Wang, J. Y., & Lu, C. D. (2005). Silk gland specific secretory expression of egfp gene in silkworm Bombyx mori with rAcMNPV system. Archives of Virology, 150(6), 1151–1160.  https://doi.org/10.1007/s00705-004-0479-4.CrossRefPubMedGoogle Scholar
  25. 25.
    Park, E. Y., Abe, T., & Kato, T. (2008). Improved expression of fusion protein using a cysteine-protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnology and Applied Biochemistry, 49(2), 135.  https://doi.org/10.1042/BA20070098.CrossRefPubMedGoogle Scholar
  26. 26.
    Hitchman, R. B., Possee, R. D., Crombie, A. T., Chambers, A., Ho, K., Siaterli, E., et al. (2009). Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biology and Toxicology, 26(1), 57–68.  https://doi.org/10.1007/s10565-009-9133-y.CrossRefPubMedGoogle Scholar
  27. 27.
    Takahashi, E., Lee, J. M., Mon, H., Chieda, Y., Yasunaga-Aoki, C., Kusakabe, T., & Iiyama, K. (2016). Effect of antibiotics on extracellular protein level in Pseudomonas aeruginosa. Plasmid, 84–85, 44–50.  https://doi.org/10.1016/j.plasmid.2016.03.001.CrossRefPubMedGoogle Scholar
  28. 28.
    Morokuma, D., Xu, J., Mon, H., Hirata, K., Hino, M., Kuboe, S., et al. (2015). Human alpha 1-acid glycoprotein as a model protein for glycoanalysis in baculovirus expression vector system. Journal of Asia-Pacific Entomology, 18(2), 303–309.  https://doi.org/10.1016/j.aspen.2015.03.006.CrossRefGoogle Scholar
  29. 29.
    Jaberie, H., & Naghibalhossaini, F. (2016). Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells. Biotechnology Letters, 38(10), 1683–1690.  https://doi.org/10.1007/s10529-016-2150-z.CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka, N., Sekiya, S., Takamizawa, H., Kato, N., Moriyama, Y., & Fujimura, S. (2005). Characterization of a 54 kDa, α1-antitrypsin-like protein isolated from ascitic fluid of an endometrial cancer patient. Japanese Journal of Cancer Research, 82(6), 693–700.  https://doi.org/10.1111/j.1349-7006.1991.tb01905.x.CrossRefGoogle Scholar
  31. 31.
    Soejima, Y., Lee, J., Nagata, Y., Mon, H., Iiyama, K., Kitano, H., et al. (2013). Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Open Life Sciences, 8(1), 1–7.  https://doi.org/10.2478/s11535-012-0112-6.CrossRefGoogle Scholar
  32. 32.
    Masuda, A., Xu, J., Mitsudome, T., Nagata, Y., Morokuma, D., Mon, H., et al. (2015). Mass production of an active peptide-N-glycosidase F using silkworm-baculovirus expression system. Molecular Biotechnology, 57(8), 735–745.  https://doi.org/10.1007/s12033-015-9866-1.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, Z., Hilder, T. L., van der Drift, K., Sloan, J., & Wee, K. (2013). Structural characterization of recombinant alpha-1-antitrypsin expressed in a human cell line. Analytical Biochemistry, 437(1), 20–28.  https://doi.org/10.1016/j.ab.2013.02.006.CrossRefPubMedGoogle Scholar
  34. 34.
    Ross, D., Brown, T., Harper, R., Pamarthi, M., Nixon, J., Bromirski, J., et al. (2012). Production and characterization of a novel human recombinant alpha-1-antitrypsin in PER.C6 cells. Journal of Biotechnology, 162(2–3), 262–273.  https://doi.org/10.1016/j.jbiotec.2012.09.018.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yoshiki Morifuji
    • 1
  • Jian Xu
    • 1
  • Noriko Karasaki
    • 1
  • Kazuhiro Iiyama
    • 2
  • Daisuke Morokuma
    • 1
  • Masato Hino
    • 1
  • Akitsu Masuda
    • 1
  • Takumi Yano
    • 1
  • Hiroaki Mon
    • 1
  • Takahiro Kusakabe
    • 1
  • Jae Man Lee
    • 1
  1. 1.Laboratory of Insect Genome ScienceKyushu University Graduate School of Bioresource and Bioenvironmental ScienceFukuokaJapan
  2. 2.Laboratory of Plant PathologyKyushu University Graduate School of Bioresource and Bioenvironmental ScienceFukuokaJapan

Personalised recommendations