Advertisement

Molecular Biotechnology

, Volume 60, Issue 11, pp 843–861 | Cite as

Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics

  • Sébastien Sart
  • Spiros N. Agathos
Review
  • 166 Downloads

Abstract

Mesenchymal stem cells and pluripotent stem cells are recognized as promising tools for tissue engineering, cell therapy, and drug screening. Their use in therapy requires the production of a sufficient number of cells committed to functional regenerative phenotypes. Time- and magnitude-controlled application of mechanical and biochemical cues is required to appropriately control the evolution of stem cell phenotype in 3D. The temporal monitoring of the impact of these cues on the diverse fates of individual stem cells is also needed to ensure the reliability of the differentiation processes. However, macro-scale bioreactors are limited in regulating stem environment and display limited capability to monitor heterogeneities at the single cell level. In turn, microfluidics devices are emerging as powerful tools for tightly controlling culture parameters and precisely monitoring stem cell behavior. This work summarizes recent advances in the applications of microfluidics for the dynamic regulation and characterization of stem cells in 3D.

Keywords

Mesenchymal stem cells Pluripotent stem cells Microfluidics Biomaterials Molecular gradients Single cell 

References

  1. 1.
    Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9(1), 11–15.  https://doi.org/10.1016/j.stem.2011.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.  https://doi.org/10.1016/j.cell.2007.11.019.CrossRefPubMedGoogle Scholar
  3. 3.
    Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plews, J. R., et al. (2012). Microfluidic single cell analysis show porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circulation Research, 111(7), 882–893.  https://doi.org/10.1161/CIRCRESAHA.112.269001.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sart, S., Agathos, S. N., Li, Y., & Ma, T. (2016). Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnology Journal, 11(1), 43–57.  https://doi.org/10.1002/biot.201500191.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sart, S., Bejoy, J., & Li, Y. (2017). Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochemistry, 59, 276–288.  https://doi.org/10.1016/j.procbio.2016.05.024.CrossRefGoogle Scholar
  6. 6.
    Kinney, M. A., Hookway, T. A., Wang, Y., & McDevitt, T. C. (2014). Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics. Annals of Biomedical Engineering, 42(2), 352–367.  https://doi.org/10.1007/s10439-013-0953-9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bartosh, T. J., Ylöstalo, J. H., Bazhanov, N., Kuhlman, J., & Prockop, D. J. (2013). Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells, 31(11), 2443–2456.  https://doi.org/10.1002/stem.1499.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379.  https://doi.org/10.1038/nature12517.CrossRefPubMedGoogle Scholar
  9. 9.
    Kinney, M. A., & McDevitt, T. C. (2013). Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends in Biotechnology, 31(2), 78–84.  https://doi.org/10.1016/j.tibtech.2012.11.001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jackson-Holmes, E. L., McDevitt, T. C., & Lu, H. (2017). A microfluidic trap array for longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell aggregates. Lab on a Chip, 17(21), 3634–3642.  https://doi.org/10.1039/c7lc00763a.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qian, T., Shusta, E. V., & Palecek, S. P. (2015). Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells. Current Opinion in Genetics & Development, 34, 54–60.  https://doi.org/10.1016/j.gde.2015.07.007.CrossRefGoogle Scholar
  12. 12.
    Gottwald, E., Giselbrecht, S., Augspurger, C., Lahni, B., Dambrowsky, N., Truckenmüller, R., et al. (2007). A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab on a Chip, 7(6), 777–785.  https://doi.org/10.1039/b618488j.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Figallo, E., Cannizzaro, C., Gerecht, S., Burdick, J. A., Langer, R., Elvassore, N., et al. (2007). Micro-bioreactor array for controlling cellular microenvironments. Lab on a Chip, 7(6), 710–719.  https://doi.org/10.1039/b700063d.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sart, S., Tsai, A.-C., Li, Y., & Ma, T. (2014). Three-dimensional aggregates of mesenchymal stem cells: Cellular mechanisms, biological properties, and applications. Tissue Engineering B, 20(5), 365–380.  https://doi.org/10.1089/ten.TEB.2013.0537.CrossRefGoogle Scholar
  15. 15.
    Guneta, V., Loh, Q. L., & Choong, C. (2016). Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. Journal of Biomedical Materials Research A, 104(5), 1090–1101.  https://doi.org/10.1002/jbm.a.35644.CrossRefGoogle Scholar
  16. 16.
    Richardson, T., Barner, S., Candiello, J., Kumta, P. N., & Banerjee, I. (2016). Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomaterialia, 35, 153–165.  https://doi.org/10.1016/j.actbio.2016.02.025.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bozza, A., Coates, E. E., Incitti, T., Ferlin, K. M., Messina, A., Menna, E., et al. (2014). Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials, 35(16), 4636–4645.  https://doi.org/10.1016/j.biomaterials.2014.02.039.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hazeltine, L. B., Badur, M. G., Lian, X., Das, A., Han, W., & Palecek, S. P. (2014). Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes. Acta Biomaterialia, 10(2), 604–612.  https://doi.org/10.1016/j.actbio.2013.10.033.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yan, Y., Li, Y., Song, L., Zeng, C., & Li, Y. (2017). Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson’s ratio. Acta Biomaterialia, 49, 192–203.  https://doi.org/10.1016/j.actbio.2016.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang, Y.-H., Khan, Z., Ma, C., Lim, H. J., & Smith Callahan, L. A. (2015). Optimization of adhesive conditions for neural differentiation of murine embryonic stem cells using hydrogels functionalized with continuous Ile-Lys-Val-Ala-Val concentration gradients. Acta Biomaterialia, 21, 55–62.  https://doi.org/10.1016/j.actbio.2015.04.031.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dixon, J. E., Shah, D. A., Rogers, C., Hall, S., Weston, N., Parmenter, C. D. J., et al. (2014). Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences, 111(15), 5580–5585.  https://doi.org/10.1073/pnas.1319685111.CrossRefGoogle Scholar
  22. 22.
    Xu, W.-L., Ong, H.-S., Zhu, Y., Liu, S.-W., Liu, L.-M., Zhou, K.-H., et al. (2017). In situ release of VEGF enhances osteogenesis in 3D porous scaffolds engineered with osterix-modified adipose-derived stem cells. Tissue Engineering A, 23(9–10), 445–457.  https://doi.org/10.1089/ten.TEA.2016.0315.CrossRefGoogle Scholar
  23. 23.
    Crecente-Campo, J., Borrajo, E., Vidal, A., & Garcia-Fuentes, M. (2017). New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. European Journal of Pharmaceutics and Biopharmaceutics, 114, 69–78.  https://doi.org/10.1016/j.ejpb.2016.12.021.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nie, Y., Zhang, K., Zhang, S., Wang, D., Han, Z., Che, Y., et al. (2017). Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomaterialia.  https://doi.org/10.1016/j.actbio.2017.08.037.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kai, D., Prabhakaran, M. P., Jin, G., Tian, L., & Ramakrishna, S. (2017). Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(4), 1002–1010.  https://doi.org/10.1002/term.1999.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McMillen, P., & Holley, S. A. (2015). Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Current Opinion in Cell Biology, 36, 48–53.  https://doi.org/10.1016/j.ceb.2015.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moore, R., Cai, K. Q., Escudero, D. O., & Xu, X.-X. (2009). Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation. Genesis (New York, N.Y.: 2000), 47(9), 579–589.  https://doi.org/10.1002/dvg.20536.CrossRefGoogle Scholar
  28. 28.
    Sart, S., Tomasi, R., Amselem, G., & Baroud, C. N. (2018). Mapping the structure and biological functions of human mesenchymal stem cell spheroids using microfluidics. In preparation.Google Scholar
  29. 29.
    Hough, S. R., Laslett, A. L., Grimmond, S. B., Kolle, G., & Pera, M. F. (2009). A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS ONE, 4(11), e7708.  https://doi.org/10.1371/journal.pone.0007708.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Šustáčková, G., Legartová, S., Kozubek, S., Stixová, L., Pacherník, J., & Bártová, E. (2012). Differentiation-Independent Fluctuation of pluripotency-related transcription factors and other epigenetic markers in embryonic stem cell colonies. Stem Cells and Development, 21(5), 710–720.  https://doi.org/10.1089/scd.2011.0085.CrossRefPubMedGoogle Scholar
  31. 31.
    Jeon, S., Lee, H.-S., Lee, G.-Y., Park, G., Kim, T.-M., Shin, J., et al. (2017). Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Scientific Reports, 7(1), 6859.  https://doi.org/10.1038/s41598-017-07049-3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qi, H., Huang, G., Han, Y. L., Lin, W., Li, X., Wang, S., et al. (2016). In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates. Critical Reviews in Biotechnology, 36(1), 20–31.  https://doi.org/10.3109/07388551.2014.922917.CrossRefPubMedGoogle Scholar
  33. 33.
    Boxman, J., Sagy, N., Achanta, S., Vadigepalli, R., & Nachman, I. (2016). Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation. Scientific Reports.  https://doi.org/10.1038/srep31623.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Giobbe, G. G., Zagallo, M., Riello, M., Serena, E., Masi, G., Barzon, L., et al. (2012). Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells. Biotechnology and Bioengineering, 109(12), 3119–3132.  https://doi.org/10.1002/bit.24571.CrossRefPubMedGoogle Scholar
  35. 35.
    Poh, Y.-C., Chen, J., Hong, Y., Yi, H., Zhang, S., Chen, J., et al. (2014). Generation of organized germ layers from a single mouse embryonic stem cell. Nature Communications, 5, 4000.  https://doi.org/10.1038/ncomms5000.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bae, J. H., Lee, J. M., & Chung, B. G. (2016). Hydrogel-encapsulated 3D microwell array for neuronal differentiation. Biomedical Materials (Bristol), 11(1), 15019.  https://doi.org/10.1088/1748-6041/11/1/015019.CrossRefGoogle Scholar
  37. 37.
    Murphy, K. C., Fang, S. Y., & Leach, J. K. (2014). Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell and Tissue Research, 357(1), 91–99.  https://doi.org/10.1007/s00441-014-1830-z.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ho, S. S., Murphy, K. C., Binder, B. Y. K., Vissers, C. B., & Leach, J. K. (2016). Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Translational Medicine, 5(6), 773–781.  https://doi.org/10.5966/sctm.2015-0211.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Murphy, K. C., Hoch, A. I., Harvestine, J. N., Zhou, D., & Leach, J. K. (2016). Mesenchymal stem cell spheroids retain osteogenic phenotype through α2β1 signaling. Stem Cells Translational Medicine, 5(9), 1229–1237.  https://doi.org/10.5966/sctm.2015-0412.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    No, D. Y., Lee, S.-A., Choi, Y. Y., Park, D., Jang, J. Y., Kim, D.-S., et al. (2012). Functional 3D human primary hepatocyte spheroids made by co-culturing hepatocytes from partial hepatectomy specimens and human adipose-derived stem cells. PLoS ONE, 7(12), e50723.  https://doi.org/10.1371/journal.pone.0050723.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Meretoja, V. V., Dahlin, R. L., Wright, S., Kasper, F. K., & Mikos, A. G. (2014). Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells. Tissue Engineering C, 20(6), 514–523.  https://doi.org/10.1089/ten.tec.2013.0532.CrossRefGoogle Scholar
  42. 42.
    McFadden, T. M., Duffy, G. P., Allen, A. B., Stevens, H. Y., Schwarzmaier, S. M., Plesnila, N., et al. (2013). The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomaterialia, 9(12), 9303–9316.  https://doi.org/10.1016/j.actbio.2013.08.014.CrossRefPubMedGoogle Scholar
  43. 43.
    Laco, F., Kun, M., Weber, H. J., Ramakrishna, S., & Chan, C. K. (2009). The dose effect of human bone marrow-derived mesenchymal stem cells on epidermal development in organotypic co-culture. Journal of Dermatological Science, 55(3), 150–160.  https://doi.org/10.1016/j.jdermsci.2009.05.009.CrossRefPubMedGoogle Scholar
  44. 44.
    Huang, C.-F., Chang, Y.-J., Hsueh, Y.-Y., Huang, C.-W., Wang, D.-H., Huang, T.-C., et al. (2016). Assembling composite dermal papilla spheres with adipose-derived stem cells to enhance hair follicle induction. Scientific Reports, 6, 26436.  https://doi.org/10.1038/srep26436.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Leisten, I., Kramann, R., Ferreira, V., Bovi, M. S., Neuss, M., Ziegler, S., et al. (2012). 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials, 33(6), 1736–1747.  https://doi.org/10.1016/j.biomaterials.2011.11.034.CrossRefPubMedGoogle Scholar
  46. 46.
    Ou, D.-B., He, Y., Chen, R., Teng, J.-W., Wang, H.-T., Zeng, D., et al. (2011). Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes. Journal of Cellular Biochemistry, 112(12), 3555–3562.  https://doi.org/10.1002/jcb.23283.CrossRefPubMedGoogle Scholar
  47. 47.
    Nagamoto, Y., Tashiro, K., Takayama, K., Ohashi, K., Kawabata, K., Sakurai, F., et al. (2012). The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets. Biomaterials, 33(18), 4526–4534.  https://doi.org/10.1016/j.biomaterials.2012.03.011.CrossRefPubMedGoogle Scholar
  48. 48.
    Amano, Y., Nishiguchi, A., Matsusaki, M., Iseoka, H., Miyagawa, S., Sawa, Y., et al. (2016). Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration layer-by-layer technique and their application for pharmaceutical assays. Acta Biomaterialia, 33, 110–121.  https://doi.org/10.1016/j.actbio.2016.01.033.CrossRefPubMedGoogle Scholar
  49. 49.
    Du, C., Narayanan, K., Leong, M. F., & Wan, A. C. A. (2014). Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials, 35(23), 6006–6014.  https://doi.org/10.1016/j.biomaterials.2014.04.011.CrossRefPubMedGoogle Scholar
  50. 50.
    Takebe, T., Zhang, B., & Radisic, M. (2017). Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell, 21(3), 297–300.  https://doi.org/10.1016/j.stem.2017.08.016.CrossRefPubMedGoogle Scholar
  51. 51.
    Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M., Vallance, J. E., Tolle, K., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.  https://doi.org/10.1038/nature09691.CrossRefPubMedGoogle Scholar
  52. 52.
    McCracken, K. W., Catá, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., et al. (2014). Modeling human development and disease in pluripotent stem cell-derived gastric organoids. Nature, 516(7531), 400–404.  https://doi.org/10.1038/nature13863.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481–484.  https://doi.org/10.1038/nature12271.CrossRefPubMedGoogle Scholar
  54. 54.
    Dye, B. R., Hill, D. R., Ferguson, M. A. H., Tsai, Y.-H., Nagy, M. S., Dyal, R., et al. (2015). In vitro generation of human pluripotent stem cell derived lung organoids. eLife.  https://doi.org/10.7554/eLife.05098.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Völkner, M., Zschätzsch, M., Rostovskaya, M., Overall, R. W., Busskamp, V., Anastassiadis, K., et al. (2016). Retinal Organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports, 6(4), 525–538.  https://doi.org/10.1016/j.stemcr.2016.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ozone, C., Suga, H., Eiraku, M., Kadoshima, T., Yonemura, S., Takata, N., et al. (2016). Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nature Communications, 7, 10351.  https://doi.org/10.1038/ncomms10351.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Takasato, M., Er, P. X., Chiu, H. S., Maier, B., Baillie, G. J., Ferguson, C., et al. (2015). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 526(7574), 564–568.  https://doi.org/10.1038/nature15695.CrossRefPubMedGoogle Scholar
  58. 58.
    McCauley, H. A., & Wells, J. M. (2017). Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish. Development (Cambridge), 144(6), 958–962.  https://doi.org/10.1242/dev.140731.CrossRefGoogle Scholar
  59. 59.
    Wolfe, R. P., Leleux, J., Nerem, R. M., & Ahsan, T. (2012). Effects of shear stress on germ lineage specification of embryonic stem cells. Integrative Biology: Quantitative Biosciences from Nano to Macro, 4(10), 1263–1273.  https://doi.org/10.1039/c2ib20040f.CrossRefGoogle Scholar
  60. 60.
    Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(27), E1848–E1857.  https://doi.org/10.1073/pnas.1200250109.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Miyanishi, K., Trindade, M. C. D., Lindsey, D. P., Beaupré, G. S., Carter, D. R., Goodman, S. B., et al. (2006). Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-β3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Engineering, 12(8), 2253–2262.  https://doi.org/10.1089/ten.2006.12.2253.CrossRefPubMedGoogle Scholar
  62. 62.
    Yang, Z., Zou, Y., Guo, X. M., Tan, H. S., Denslin, V., Yeow, C. H., et al. (2011). Temporal activation of β-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated. Stem Cells and Development, 21(11), 1966–1976.  https://doi.org/10.1089/scd.2011.0376.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Adeniran-Catlett, A. E., Weinstock, L. D., Bozal, F. K., Beguin, E., Caraballo, A. T., & Murthy, S. K. (2016). Accelerated adipogenic differentiation of hMSCs in a microfluidic shear stimulation platform. Biotechnology Progress, 32(2), 440–446.  https://doi.org/10.1002/btpr.2211.CrossRefPubMedGoogle Scholar
  64. 64.
    Park, J.-C., Kim, J. C., Kim, B.-K., Cho, K.-S., Im, G.-I., Kim, B.-S., et al. (2012). Dose- and time-dependent effects of recombinant human bone morphogenetic protein-2 on the osteogenic and adipogenic potentials of alveolar bone-derived stromal cells. Journal of Periodontal Research, 47(5), 645–654.  https://doi.org/10.1111/j.1600-0765.2012.01477.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Ding, H., Chen, S., Yin, J.-H., Xie, X.-T., Zhu, Z.-H., Gao, Y.-S., et al. (2014). Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Molecular Medicine Reports, 10(4), 2184–2190.  https://doi.org/10.3892/mmr.2014.2451.CrossRefPubMedGoogle Scholar
  66. 66.
    Alm, J. J., Heino, T. J., Hentunen, T. A., Väänänen, H. K., & Aro, H. T. (2012). Transient 100 nM dexamethasone treatment reduces inter- and intra individual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells. Tissue Engineering C, 18(9), 658–666.  https://doi.org/10.1089/ten.TEC.2011.0675.CrossRefGoogle Scholar
  67. 67.
    Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9(10), 2329–2340.  https://doi.org/10.1038/nprot.2014.158.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    McMurtrey, R. J. (2017). Roles of diffusion dynamics in stem cell signaling and three-dimensional tissue development. Stem Cells and Development, 26(18), 1293–1303.  https://doi.org/10.1089/scd.2017.0066.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Stavenschi, E., Labour, M.-N., & Hoey, D. A. (2017). Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. Journal of Biomechanics.  https://doi.org/10.1016/j.jbiomech.2017.02.002.CrossRefPubMedGoogle Scholar
  70. 70.
    Shen, N., Knopf, A., Westendorf, C., Kraushaar, U., Riedl, J., Bauer, H., et al. (2017). Steps toward maturation of embryonic stem cell-derived cardiomyocytes by defined physical signals. Stem Cell Reports, 9(1), 122–135.  https://doi.org/10.1016/j.stemcr.2017.04.021.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Berry, J. D., Liovic, P., Šutalo, I. D., Stewart, R. L., Glattauer, V., & Meagher, L. (2016). Characterisation of stresses on microcarriers in a stirred bioreactor. Applied Mathematical Modelling, 40(15), 6787–6804.  https://doi.org/10.1016/j.apm.2016.02.025.CrossRefGoogle Scholar
  72. 72.
    Bartnikowski, M., Klein, T. J., Melchels, F. P. W., & Woodruff, M. A. (2014). Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures. Biotechnology and Bioengineering, 111(7), 1440–1451.  https://doi.org/10.1002/bit.25200.CrossRefPubMedGoogle Scholar
  73. 73.
    Wu, J. Z., & Herzog, W. (2000). Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Annals of Biomedical Engineering, 28(3), 318–330.CrossRefPubMedGoogle Scholar
  74. 74.
    Shieh, A. C., & Athanasiou, K. A. (2007). Dynamic compression of single cells. Osteoarthritis and Cartilage, 15(3), 328–334.  https://doi.org/10.1016/j.joca.2006.08.013.CrossRefPubMedGoogle Scholar
  75. 75.
    Moraes, C., Sun, Y., & Simmons, C. A. (2011). (Micro) managing the mechanical microenvironment. Integrative Biology: Quantitative Biosciences from Nano to Macro, 3(10), 959–971.  https://doi.org/10.1039/c1ib00056j.CrossRefGoogle Scholar
  76. 76.
    Selimović, Š, Oh, J., Bae, H., Dokmeci, M., & Khademhosseini, A. (2012). Microscale strategies for generating cell-encapsulating hydrogels. Polymers, 4(3), 1554.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Wu, J., & Tzanakakis, E. S. (2013). Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches. Biotechnology Advances, 31(7), 1047–1062.  https://doi.org/10.1016/j.biotechadv.2013.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Smith, Q., Stukalin, E., Kusuma, S., Gerecht, S., & Sun, S. X. (2015). Stochasticity and spatial interaction govern stem cell differentiation dynamics. Scientific Reports, 5, 12617.  https://doi.org/10.1038/srep12617.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Freeman, B. T., Jung, J. P., & Ogle, B. M. (2015). Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS ONE, 10(9), e0136199.  https://doi.org/10.1371/journal.pone.0136199.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lee, W. C., Shi, H., Poon, Z., Nyan, L. M., Kaushik, T., Shivashankar, G. V., et al. (2014). Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proceedings of the National Academy of Sciences, 111(42), E4409–E4418.  https://doi.org/10.1073/pnas.1402306111.CrossRefGoogle Scholar
  81. 81.
    Lee, Y. J., Vega, S. L., Patel, P. J., Aamer, K. A., Moghe, P. V., & Cicerone, M. T. (2014). Quantitative, label-free characterization of stem cell differentiation at the single-cell level by broadband coherent anti-stokes Raman scattering microscopy. Tissue Engineering C, 20(7), 562–569.  https://doi.org/10.1089/ten.TEC.2013.0472.CrossRefGoogle Scholar
  82. 82.
    Levi, B., Wan, D. C., Glotzbach, J. P., Hyun, J., Januszyk, M., Montoro, D., et al. (2011). CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. The Journal of Biological Chemistry, 286(45), 39497–39509.  https://doi.org/10.1074/jbc.M111.256529.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Duscher, D., Rennert, R. C., Januszyk, M., Anghel, E., Maan, Z. N., Whittam, A. J., et al. (2014). Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports, 4, 7144.  https://doi.org/10.1038/srep07144.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Phinney, D. G. (2012). Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. Journal of Cellular Biochemistry, 113(9), 2806–2812.  https://doi.org/10.1002/jcb.24166.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Torres-Padilla, M.-E., & Chambers, I. (2014). Transcription factor heterogeneity in pluripotent stem cells: A stochastic advantage. Development (Cambridge), 141(11), 2173–2181.  https://doi.org/10.1242/dev.102624.CrossRefGoogle Scholar
  86. 86.
    Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., et al. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 161(5), 1187–1201.  https://doi.org/10.1016/j.cell.2015.04.044.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Singer, Z. S., Yong, J., Tischler, J., Hackett, J. A., Altinok, A., Surani, M. A., et al. (2014). Dynamic heterogeneity and DNA methylation in embryonic stem cells. Molecular Cell, 55(2), 319–331.  https://doi.org/10.1016/j.molcel.2014.06.029.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hough, S. R., Thornton, M., Mason, E., Mar, J. C., Wells, C. A., & Pera, M. F. (2014). Single-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell Reports, 2(6), 881–895.  https://doi.org/10.1016/j.stemcr.2014.04.014.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Natarajan, K. N., Teichmann, S. A., & Kolodziejczyk, A. A. (2017). Single cell transcriptomics of pluripotent stem cells: Reprogramming and differentiation. Current Opinion in Genetics & Development, 46, 66–76.  https://doi.org/10.1016/j.gde.2017.06.003.CrossRefGoogle Scholar
  90. 90.
    Labriola, N. R., & Darling, E. M. (2015). Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. Journal of Biomechanics, 48(6), 1058–1066.  https://doi.org/10.1016/j.jbiomech.2015.01.033.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gibson, J. D., Jakuba, C. M., Boucher, N., Holbrook, K. A., Carter, M. G., & Nelson, C. E. (2009). Single-cell transcript analysis of human embryonic stem cells. Integrative Biology: Quantitative Biosciences from Nano to Macro, 1(8–9), 540–551.  https://doi.org/10.1039/b908276j.CrossRefGoogle Scholar
  92. 92.
    Moussy, A., Cosette, J., Parmentier, R., Silva, C., da Corre, G., Richard, A., et al. (2017). Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. PLoS Biology, 15(7), e2001867.  https://doi.org/10.1371/journal.pbio.2001867.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Skylaki, S., Hilsenbeck, O., & Schroeder, T. (2016). Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology, 34(11), 1137–1144.  https://doi.org/10.1038/nbt.3713.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhong, J. F., Weiner, L., Jin, Y., Lu, W., & Taylor, C. R. (2010). A real-time pluripotency reporter for human stem cells. Stem Cells and Development, 19(1), 47–52.  https://doi.org/10.1089/scd.2008.0363.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Desai, H. V., Voruganti, I. S., Jayasuriya, C., Chen, Q., & Darling, E. M. (2014). Live-cell, temporal gene expression analysis of osteogenic differentiation in adipose-derived stem cells. Tissue Engineering A, 20(5–6), 899–907.  https://doi.org/10.1089/ten.tea.2013.0761.CrossRefGoogle Scholar
  96. 96.
    Yuan, G.-C., Cai, L., Elowitz, M., Enver, T., Fan, G., Guo, G., et al. (2017). Challenges and emerging directions in single-cell analysis. Genome Biology, 18(1), 84.  https://doi.org/10.1186/s13059-017-1218-y.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Liu, H., Yang, H., Zhu, D., Sui, X., Li, J., Liang, Z., et al. (2014). Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells. Cell Research, 24(10), 1181–1200.  https://doi.org/10.1038/cr.2014.118.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rodrigues, G. M. C., Gaj, T., Adil, M. M., Wahba, J., Rao, A. T., Lorbeer, F. K., et al. (2017). Defined and scalable differentiation of human oligodendrocyte precursors from pluripotent stem cells in a 3D culture system. Stem Cell Reports, 8(6), 1770–1783.  https://doi.org/10.1016/j.stemcr.2017.04.027.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Low, K., Wong, L. Y., Maldonado, M., Manjunath, C., Horner, C. B., Perez, M., et al. (2017). Physico-electrochemical characterization of pluripotent stem cells during self-renewal or differentiation by a multi-modal monitoring system. Stem Cell Reports, 8(5), 1329–1339.  https://doi.org/10.1016/j.stemcr.2017.03.021.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Seidel, D., Obendorf, J., Englich, B., Jahnke, H.-G., Semkova, V., Haupt, S., et al. (2016). Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosensors & Bioelectronics, 86, 277–286.  https://doi.org/10.1016/j.bios.2016.06.056.CrossRefGoogle Scholar
  101. 101.
    Kallepitis, C., Bergholt, M. S., Mazo, M. M., Leonardo, V., Skaalure, S. C., Maynard, S. A., et al. (2017). Quantitative volumetric Raman imaging of three dimensional cell cultures. Nature Communications.  https://doi.org/10.1038/ncomms14843.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Belair, D. G., Whisler, J. A., Valdez, J., Velazquez, J., Molenda, J. A., Vickerman, V., et al. (2015). Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Stem Cell Reviews, 11(3), 511–525.  https://doi.org/10.1007/s12015-014-9549-5.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Hesari, Z., Soleimani, M., Atyabi, F., Sharifdini, M., Nadri, S., Warkiani, M. E., et al. (2016). A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. Journal of Biomedical Materials Research A, 104(6), 1534–1543.  https://doi.org/10.1002/jbm.a.35689.CrossRefGoogle Scholar
  104. 104.
    Li, F., Truong, V. X., Thissen, H., Frith, J. E., & Forsythe, J. S. (2017). Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Applied Materials & Interfaces, 9(10), 8589–8601.  https://doi.org/10.1021/acsami.7b00728.CrossRefGoogle Scholar
  105. 105.
    Fung, W.-T., Beyzavi, A., Abgrall, P., Nguyen, N.-T., & Li, H.-Y. (2009). Microfluidic platform for controlling the differentiation of embryoid bodies. Lab on a chip, 9(17), 2591–2595.  https://doi.org/10.1039/b903753e.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kamei, K., Mashimo, Y., Yoshioka, M., Tokunaga, Y., Fockenberg, C., Terada, S., et al. (2017). Microfluidic-nanofiber hybrid array for screening of cellular microenvironments. Small (Weinheim an der Bergstrasse, Germany), 13(18), 1603104.  https://doi.org/10.1002/smll.201603104.CrossRefGoogle Scholar
  107. 107.
    Khoury, M., Bransky, A., Korin, N., Konak, L. C., Enikolopov, G., Tzchori, I., et al. (2010). A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomedical Microdevices, 12(6), 1001–1008.  https://doi.org/10.1007/s10544-010-9454-x.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chan, H. F., Zhang, Y., Ho, Y.-P., Chiu, Y.-L., Jung, Y., & Leong, K. W. (2013). Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Scientific Reports.  https://doi.org/10.1038/srep03462.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Cimetta, E., Sirabella, D., Yeager, K., Davidson, K., Simon, J., Moon, R. T., et al. (2013). Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab on a chip, 13(3), 355–364.  https://doi.org/10.1039/c2lc40836h.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Occhetta, P., Centola, M., Tonnarelli, B., Redaelli, A., Martin, I., & Rasponi, M. (2015). High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Scientific Reports.  https://doi.org/10.1038/srep10288.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Wilson, J. L., Suri, S., Singh, A., Rivet, C. A., Lu, H., & McDevitt, T. C. (2013). Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomedical Microdevices.  https://doi.org/10.1007/s10544-013-9807-3.CrossRefGoogle Scholar
  112. 112.
    Siltanen, C., Yaghoobi, M., Haque, A., You, J., Lowen, J., Soleimani, M., et al. (2016). Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomaterialia, 34, 125–132.  https://doi.org/10.1016/j.actbio.2016.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Uzel, S. G. M., Amadi, O. C., Pearl, T. M., Lee, R. T., So, P. T. C., & Kamm, R. D. (2016). Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small (Weinheim an der Bergstrasse, Germany), 12(5), 612–622.  https://doi.org/10.1002/smll.201501905.CrossRefGoogle Scholar
  114. 114.
    Kamei, K.-I., Koyama, Y., Tokunaga, Y., Mashimo, Y., Yoshioka, M., Fockenberg, C., et al. (2016). Characterization of phenotypic and transcriptional differences in human pluripotent stem cells under 2D and 3D culture conditions. Advanced Healthcare Materials, 5(22), 2951–2958.  https://doi.org/10.1002/adhm.201600893.CrossRefPubMedGoogle Scholar
  115. 115.
    Hirano, K., Konagaya, S., Turner, A., Noda, Y., Kitamura, S., Kotera, H., et al. (2017). Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells. Biochemical and Biophysical Research Communications, 487(2), 344–350.  https://doi.org/10.1016/j.bbrc.2017.04.062.CrossRefPubMedGoogle Scholar
  116. 116.
    Tabata, Y., & Lutolf, M. P. (2017). Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization. Scientific Reports.  https://doi.org/10.1038/srep44711.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kondo, Y., Hattori, K., Tashiro, S., Nakatani, E., Yoshimitsu, R., Satoh, T., et al. (2017). Compartmentalized microfluidic perfusion system to culture human induced pluripotent stem cell aggregates. Journal of Bioscience and Bioengineering, 124(2), 234–241.  https://doi.org/10.1016/j.jbiosc.2017.03.014.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Pagano, G., Ventre, M., Iannone, M., Greco, F., Maffettone, P. L., & Netti, P. A. (2014). Optimizing design and fabrication of microfluidic devices for cell cultures: An effective approach to control cell microenvironment in three dimensions. Biomicrofluidics, 8(4), 46503.  https://doi.org/10.1063/1.4893913.CrossRefGoogle Scholar
  119. 119.
    Jeon, J. S., Bersini, S., Whisler, J. A., Chen, M. B., Dubini, G., Charest, J. L., et al. (2014). Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integrative Biology: Quantitative Biosciences from Nano to Macro, 6(5), 555–563.  https://doi.org/10.1039/c3ib40267c.CrossRefGoogle Scholar
  120. 120.
    Headen, D. M., Aubry, G., Lu, H., & García, A. J. (2014). Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Advanced Materials (Deerfield Beach, Fla.).  https://doi.org/10.1002/adma.201304880.CrossRefGoogle Scholar
  121. 121.
    Lienemann, P. S., Devaud, Y. R., Reuten, R., Simona, B. R., Karlsson, M., Weber, W., et al. (2014). Locally controlling mesenchymal stem cell morphogenesis by 3D PDGF-BB gradients towards the establishment of an in vitro perivascular niche. Integrative Biology, 7(1), 101–111.  https://doi.org/10.1039/C4IB00152D.CrossRefGoogle Scholar
  122. 122.
    Utech, S., Prodanovic, R., Mao, A. S., Ostafe, R., Mooney, D. J., & Weitz, D. A. (2015). Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Advanced Healthcare Materials, 4(11), 1628–1633.  https://doi.org/10.1002/adhm.201500021.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hasenberg, T., Mühleder, S., Dotzler, A., Bauer, S., Labuda, K., Holnthoner, W., et al. (2015). Emulating human microcapillaries in a multi-organ-chip platform. Journal of Biotechnology, 216, 1–10.  https://doi.org/10.1016/j.jbiotec.2015.09.038.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Hsieh, W.-T., Liu, Y.-S., Lee, Y.-H., Rimando, M. G., Lin, K.-H., & Lee, O. K. (2016). Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Acta Biomaterialia, 32, 210–222.  https://doi.org/10.1016/j.actbio.2016.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Lück, S., Schubel, R., Rüb, J., Hahn, D., Mathieu, E., Zimmermann, H., et al. (2016). Tailored and biodegradable poly(2-oxazoline) microbeads as 3D matrices for stem cell culture in regenerative therapies. Biomaterials, 79, 1–14.  https://doi.org/10.1016/j.biomaterials.2015.11.045.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Liu, M., Zhou, Z., Chai, Y., Zhang, S., Wu, X., Huang, S., et al. (2017). Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Biofabrication, 9(2), 25030.  https://doi.org/10.1088/1758-5090/aa71da.CrossRefGoogle Scholar
  127. 127.
    Kamperman, T., Henke, S., Visser, C. W., Karperien, M., & Leijten, J. (2017). Centering single cells in microgels via delayed crosslinking supports long-term 3D culture by preventing cell escape. Small (Weinheim an der Bergstrasse, Germany).  https://doi.org/10.1002/smll.201603711.CrossRefGoogle Scholar
  128. 128.
    Du, X., Huang, F., Zhang, S., Yao, Y., Chen, Y., Chen, Y., et al. (2017). Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release in vitro. Artificial Cells, Nanomedicine, and Biotechnology.  https://doi.org/10.1080/21691401.2017.1282499.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Hou, Y., Xie, W., Achazi, K., Cuellar-Camacho, J. L., Melzig, M. F., Chen, W., et al. (2018). Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia.  https://doi.org/10.1016/j.actbio.2018.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Toh, Y.-C., Zhang, C., Zhang, J., Khong, Y. M., Chang, S., Samper, V. D., et al. (2007). A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on a Chip, 7(3), 302–309.  https://doi.org/10.1039/b614872g.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Choi, J., Kim, S., Jung, J., Lim, Y., Kang, K., Park, S., et al. (2011). Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials, 32(29), 7013–7022.  https://doi.org/10.1016/j.biomaterials.2011.05.090.CrossRefPubMedGoogle Scholar
  132. 132.
    Sart, S., Tomasi, R., Amselem, G., & Baroud, C. N. (2017). Multiscale cytometry and regulation of 3D Cell cultures on a chip. Nature Communications, 8, 469CrossRefPubMedCentralPubMedGoogle Scholar
  133. 133.
    Chau, M., Abolhasani, M., Thérien-Aubin, H., Li, Y., Wang, Y., Velasco, D., et al. (2014). Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties. Biomacromolecules, 15(7), 2419–2425.  https://doi.org/10.1021/bm5002813.CrossRefPubMedGoogle Scholar
  134. 134.
    Sikorski, D. J., Caron, N. J., VanInsberghe, M., Zahn, H., Eaves, C. J., Piret, J. M., et al. (2015). Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures. Biotechnology Journal, 10(10), 1546–1554.  https://doi.org/10.1002/biot.201500035.CrossRefPubMedGoogle Scholar
  135. 135.
    Hu, G., & Li, D. (2007). Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel. Biomedical Microdevices, 9(3), 315–323.  https://doi.org/10.1007/s10544-006-9035-1.CrossRefPubMedGoogle Scholar
  136. 136.
    Kutejova, E., Briscoe, J., & Kicheva, A. (2009). Temporal dynamics of patterning by morphogen gradients. Current Opinion in Genetics & Development, 19(4), 315–322.  https://doi.org/10.1016/j.gde.2009.05.004.CrossRefGoogle Scholar
  137. 137.
    Toh, A. G. G., Wang, Z. P., Yang, C., & Nguyen, N.-T. (2014). Engineering microfluidic concentration gradient generators for biological applications. Microfluidics and Nanofluidics, 16(1–2), 1–18.  https://doi.org/10.1007/s10404-013-1236-3.CrossRefGoogle Scholar
  138. 138.
    Suri, S., Singh, A., Nguyen, A. H., Bratt-Leal, A. M., McDevitt, T. C., & Lu, H. (2013). Microfluidic-based patterning of embryonic stem cells for in vitro development studies. Lab on a Chip, 13(23), 4617–4624.  https://doi.org/10.1039/c3lc50663k.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wang, X., Liu, Z., & Pang, Y. (2017). Concentration gradient generation methods based on microfluidic systems. RSC Advances, 7(48), 29966–29984.  https://doi.org/10.1039/C7RA04494A.CrossRefGoogle Scholar
  140. 140.
    Kamei, K., Mashimo, Y., Koyama, Y., Fockenberg, C., Nakashima, M., Nakajima, M., et al. (2015). 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomedical Microdevices, 17(2), 36.  https://doi.org/10.1007/s10544-015-9928-y.CrossRefPubMedGoogle Scholar
  141. 141.
    Cosson, S., & Lutolf, M. P. (2014). Hydrogel microfluidics for the patterning of pluripotent stem cells. Scientific Reports.  https://doi.org/10.1038/srep04462.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LadHyX and Department of MechanicsÉcole Polytechnique, CNRS - UMR 7646PalaiseauFrance
  2. 2.Physical Microfluidics and Bioengineering, Department of Genomes and GeneticsPasteur InstituteParisFrance
  3. 3.Laboratory of Bioengineering, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.School of Biological Sciences and EngineeringYachay Tech UniversitySan Miguel de UrcuquíEcuador

Personalised recommendations