Advertisement

Molecular Biotechnology

, Volume 60, Issue 11, pp 791–798 | Cite as

Identification of Potential Molecular Determinants of Murine Embryonic Stem Cell Differentiation by a Transposon-Based Approach

  • Yan Wang
  • Tingjun Lei
  • Qian Dai
  • Ping Ding
  • Tong Qiu
  • Yin Fang
Original Paper
  • 41 Downloads

Abstract

Embryonic stem cells (ESCs) are self-renewing pluripotent cells, capable of differentiating into all somatic cell types. The molecular control of self-renewal is relatively well-characterized, whereas how ESCs exit pluripotent state to differentiate is poorly understood. Here we identify two genes are required for differentiation and dozens of intergenic regions that potentially regulate ESC differentiation. We used PiggyBac (PB) transposon-based approach to randomly mutate the genome of ESCs, and generated hundreds of clones that resisted differentiation signals. Each clone was sequenced to determine genomic regions mutated by PB insertion. Intriguingly, many mutations were localized among intergenic regions and we identified two genes are required for differentiation. This study should facilitate further exploration of novel molecular determinants of embryonic stem cell differentiation.

Keywords

Embryonic stem cell Pluripotency Cell differentiation Stromal interaction molecule 1 (STIM1Mitogen-activated protein kinase (MAPKPiggyBac transposon 

Notes

Acknowledgements

We thank Professor Pentao Liu (The Wellcome Trust Sanger Institute, United Kingdom) for kindly providing PiggyBac plasmid, Mrs. Ling Lin and the Science & Technology Department of West China Second University Hospital at Sichuan University for administrative assistance.

Author Contributions

TQ and YF conceived the experiments. YW, TL, PD, and QD conducted experiments and participated in writing the manuscript. All authors reviewed the manuscript.

Funding

This work was supported by National Natural Science Foundation of China (81671115), and Science and Technology Department of Sichuan Province (2016JQ0029). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

12033_2018_110_MOESM1_ESM.xlsx (19 kb)
Supplementary Table S1 (XLSX 19 KB)
12033_2018_110_MOESM2_ESM.xlsx (10 kb)
Supplementary Table S2 (XLSX 9 KB)

References

  1. 1.
    Evans, M. (2011). Discovering pluripotency: 30 years of mouse embryonic stem cells. Nature Reviews Molecular Cell Biology, 12, 680–686.CrossRefGoogle Scholar
  2. 2.
    Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144, 940–954.CrossRefGoogle Scholar
  3. 3.
    Yu, J., & Thomson, J. A. (2008). Pluripotent stem cell lines. Genes & Development, 22, 1987–1997.CrossRefGoogle Scholar
  4. 4.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefGoogle Scholar
  5. 5.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.CrossRefGoogle Scholar
  6. 6.
    Sterneckert, J. L., Reinhardt, P., & Scholer, H. R. (2014). Investigating human disease using stem cell models. Nature Reviews Genetics, 15, 625–639.CrossRefGoogle Scholar
  7. 7.
    Cohen, D. E., & Melton, D. (2011). Turning straw into gold: Directing cell fate for regenerative medicine. Nature Reviews Genetics, 12, 243–252.CrossRefGoogle Scholar
  8. 8.
    Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E., & Fraser, M. J. (1989). Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 172, 156–169.CrossRefGoogle Scholar
  9. 9.
    Wang, W., Lin, C., Lu, D., Ning, Z., Cox, T., Melvin, D., Wang, X., Bradley, A., & Liu, P. (2008). Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9290–9295.CrossRefGoogle Scholar
  10. 10.
    Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y., & Xu, T. (2005). Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 122, 473–483.CrossRefGoogle Scholar
  11. 11.
    Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., & Scholer, H. R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development (Cambridge, England), 122, 881–894.Google Scholar
  12. 12.
    Ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., & Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3, 508–518.CrossRefGoogle Scholar
  13. 13.
    Uren, A. G., Mikkers, H., Kool, J., van der Weyden, L., Lund, A. H., Wilson, C. H., Rance, R., Jonkers, J., van Lohuizen, M., Berns, A., & Adams, D. J. (2009). A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nature Protocols, 4, 789–798.CrossRefGoogle Scholar
  14. 14.
    Nichols, J., & Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell, 4, 487–492.CrossRefGoogle Scholar
  15. 15.
    Barruet, E., Hadadeh, O., Peiretti, F., Renault, V. M., Hadjal, Y., Bernot, D., Tournaire, R., Negre, D., Juhan-Vague, I., Alessi, M. C., & Binetruy, B. (2011). p38 mitogen activated protein kinase controls two successive-steps during the early mesodermal commitment of embryonic stem cells. Stem Cells and Development, 20, 1233–1246.CrossRefGoogle Scholar
  16. 16.
    Hadjal, Y., Hadadeh, O., Yazidi, C. E., Barruet, E., & Binetruy, B. (2013) A p38MAPK-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells. Cell Death & Disease 4, e737.CrossRefGoogle Scholar
  17. 17.
    Yan, L., Mieulet, V., Burgess, D., Findlay, G. M., Sully, K., Procter, J., Goris, J., Janssens, V., Morrice, N. A., & Lamb, R. F. (2010). PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Molecular Cell, 37, 633–642.CrossRefGoogle Scholar
  18. 18.
    Betschinger, J., Nichols, J., Dietmann, S., Corrin, P. D., Paddison, P. J., & Smith, A. (2013). Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell, 153, 335–347.CrossRefGoogle Scholar
  19. 19.
    Inagaki, K., Begley, R., Ikeno, F., & Mochly-Rosen, D. (2005). Cardioprotection by epsilon-protein kinase C activation from ischemia: Continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation, 111, 44–50.CrossRefGoogle Scholar
  20. 20.
    Monti, M., Donnini, S., Morbidelli, L., Giachetti, A., Mochly-Rosen, D., Mignatti, P., & Ziche, M. (2013). PKCepsilon activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. Journal of Molecular and Cellular Cardiology, 63, 107–117.CrossRefGoogle Scholar
  21. 21.
    Dutta, D., Ray, S., Home, P., Larson, M., Wolfe, M. W., & Paul, S. (2011). Self-renewal versus lineage commitment of embryonic stem cells: Protein kinase C signaling shifts the balance. Stem Cells (Dayton, Ohio), 29, 618–628.CrossRefGoogle Scholar
  22. 22.
    Soboloff, J., Rothberg, B. S., Madesh, M., & Gill, D. L. (2012). STIM proteins: Dynamic calcium signal transducers. Nature Reviews, 13, 549–565.CrossRefGoogle Scholar
  23. 23.
    Li, X., Zhu, L., Yang, A., Lin, J., Tang, F., Jin, S., Wei, Z., Li, J., & Jin, Y. (2011). Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell, 8, 46–58.CrossRefGoogle Scholar
  24. 24.
    Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D. A., Song, J., Pan, J. Q., Weissleder, R., Lee, H., Zhang, F., & Sharp, P. A. (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160, 1246–1260.CrossRefGoogle Scholar
  25. 25.
    Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481, 295–305.CrossRefGoogle Scholar
  26. 26.
    Dai, Q., Luan, G., Deng, L., Lei, T., Kang, H., Song, X., Zhang, Y., Xiao, Z. X., & Li, Q. (2014). Primordial dwarfism gene maintains Lin28 expression to safeguard embryonic stem cells from premature differentiation. Cell Reports, 7, 735–746.CrossRefGoogle Scholar
  27. 27.
    Dai, Q., Lei, T., Zhao, C., Zhong, J., Tang, Y. Z., Chen, B., Yang, J., Li, C., Wang, S., Song, X., Li, L., & Li, Q. (2012). Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. Journal of Biological Chemistry, 287, 25344–25352.CrossRefGoogle Scholar
  28. 28.
    Lei, T., Zhang, P., Zhang, X., Xiao, X., Zhang, J., Qiu, T., Dai, Q., Zhang, Y., Min, L., Li, Q., Yin, R., Ding, P., Li, N., Qu, Y., Mu, D., Qin, J., Zhu, X., Xiao, Z. X., & Li, Q. (2018). Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nature Communications, 9, 1876.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
  2. 2.Center of Growth, Metabolism, and Aging, College of Life SciencesSichuan UniversityChengduChina
  3. 3.Sichuan Cunde TherapeuticsChengduChina
  4. 4.Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationSichuan UniversityChengduChina

Personalised recommendations