Advertisement

Molecular Biotechnology

, Volume 60, Issue 9, pp 690–697 | Cite as

Effect of Active Site Pocket Structure Modification of d-Stereospecific Amidohydrolase on the Recognition of Stereospecific and Hydrophobic Substrates

  • Yasmeen Yousif Ahmed Elyas
  • Kazusa Miyatani
  • Katsuhiko Shimizu
  • Jiro Arima
Original Paper
  • 86 Downloads

Abstract

d-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2 has potential utility for the synthesis of d/l configuration dipeptides by an aminolysis reaction. Structural comparison of DAH with substrate-bound d-amino acid amidase revealed that three residues located in the active site pocket of DAH (Thr145, Ala267, and Gly271) might be involved in interactions with d-phenylalanine substrate. We substituted Ala267 and Gly271, which are located at the bottom of the hydrophobic pocket of DAH, with Phe and observed changes in the stereoselectivity and specific activity toward the free and acetylated forms of d/l-Phe-methyl esters. In contrast, the mutation of Thr145, which likely supplies negative charge for recognition of the amino group of the substrate, hardly affected the stereoselectivity of the enzyme. A similar effect was observed in an investigation of hydrolysis and aminolysis reactions using the acetylated forms of d/l-Phe-methyl esters and 1,8-diaminooctane as an acyl-donor and acyl-acceptor, respectively. Substrate binding by DAH was disrupted by the mutation of Ala267 to Val or Trp and kinetic analysis showed that the hydrophobicity of the bottom of the active site pocket (Ala267 and Gly271) is important for both stereoselectivity and recognition of hydrophobic substrates.

Keywords

d-Stereospecific amidohydrolase Stereospecificity Substrate recognition Hydrophobic pocket 

Notes

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 26450124). We thank Dr. T. Bito Faculty of Agriculture, Tottori University, for helpful advice and technical support during this study.

Supplementary material

12033_2018_104_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1212 KB)

References

  1. 1.
    Page, M. J., & Di Cera, E. (2008). Serine peptidases: Classification, structure and function. Cellular and Molecular Life Sciences, 65(7–8), 1220–1236.  https://doi.org/10.1007/s00018-008-7565-9.CrossRefPubMedGoogle Scholar
  2. 2.
    Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102(12), 4501–4523.  https://doi.org/10.1021/CR000033X.CrossRefPubMedGoogle Scholar
  3. 3.
    Craik, C., Largman, C., Fletcher, T., Roczniak, S., Barr, P., Fletterick, R., & Rutter, W. (1985). Redesigning trypsin: Alteration of substrate specificity. Science, 228(4697), 291–297.  https://doi.org/10.1126/science.3838593.CrossRefPubMedGoogle Scholar
  4. 4.
    Asano, Y., & Lübbehüsen, T. L. (2000). Enzymes acting on peptides containing D-amino acid. Journal of Bioscience and Bioengineering, 89(4), 295–306.CrossRefPubMedGoogle Scholar
  5. 5.
    Goswami, A., & Van Lanen, S. G. (2015). Enzymatic strategies and biocatalysts for amide bond formation: Tricks of the trade outside of the ribosome. Molecular BioSystems, 11(2), 338–353.  https://doi.org/10.1039/C4MB00627E.CrossRefPubMedGoogle Scholar
  6. 6.
    Rawlings, N. D., Barrett, A. J., & Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44(D1), D343–D350.  https://doi.org/10.1093/nar/gkv1118.CrossRefPubMedGoogle Scholar
  7. 7.
    Arima, J., Ito, H., Hatanaka, T., & Mori, N. (2011). Aminolytic reaction catalyzed by d-stereospecific amidohydrolases from Streptomyces spp. Biochimie, 93(9), 1460–1469.  https://doi.org/10.1016/j.biochi.2011.04.020.CrossRefPubMedGoogle Scholar
  8. 8.
    Arima, J., Usuki, H., Hatanaka, T., & Mori, N. (2011). One-pot synthesis of diverse DL-configuration dipeptides by a Streptomyces D-stereospecific amidohydrolase. Applied and Environmental Microbiology, 77(23), 8209–8218.  https://doi.org/10.1128/AEM.05543-11.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Houston, D. R., Eggleston, I. M., Synstad, B., Eijsink, V. G. H., & van Aalten, D. M. F. (2002). The cyclic dipeptide CI-4 [cyclo-(L-Arg-D-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. The Biochemical Journal, 27, 23–27.CrossRefGoogle Scholar
  10. 10.
    Arima, J., Shimone, K., Miyatani, K., Tsunehara, Y., Isoda, Y., Hino, T., & Nagano, S. (2016). Crystal structure of d-stereospecific amidohydrolase from Streptomyces sp. 82F2—Insight into the structural factors for substrate specificity. FEBS Journal, 283(2), 337–349.  https://doi.org/10.1111/febs.13579.CrossRefPubMedGoogle Scholar
  11. 11.
    Okazaki, S., Suzuki, A., Komeda, H., Yamaguchi, S., Asano, Y., & Yamane, T. (2007). Crystal structure and functional characterization of a D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-recognizing proteins. Journal of Molecular Biology, 368(1), 79–91.  https://doi.org/10.1016/j.jmb.2006.10.070.CrossRefPubMedGoogle Scholar
  12. 12.
    Tsai, P.-C., Fan, Y., Kim, J., Yang, L., Almo, S. C., Gao, Y. Q., & Raushel, F. M. (2010). Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase. Biochemistry, 49(37), 7988–7997.  https://doi.org/10.1021/bi101058z.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    John, J.. Perona, & Craik, C. S. (1995). Structural basis of substrate specificity in the serine proteases. Protein Science, 4, 337–360.Google Scholar
  14. 14.
    Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.  https://doi.org/10.1093/bioinformatics/bti770.CrossRefGoogle Scholar
  15. 15.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258.  https://doi.org/10.1093/nar/gku340.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.  https://doi.org/10.1002/jcc.20084.CrossRefPubMedGoogle Scholar
  17. 17.
    Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20(4), 470–475.PubMedGoogle Scholar
  18. 18.
    Elyas, Y. Y. A., Miyatani, K., Bito, T., Uraji, M., Hatanaka, T., Shimizu, K., & Arima, J. (2018). Active site pocket of Streptomyces d-stereospecific amidohydrolase has functional roles in aminolysis activity. Journal of Bioscience and Bioengineering.  https://doi.org/10.1016/j.jbiosc.2018.03.004.CrossRefPubMedGoogle Scholar
  19. 19.
    Morrison, K. L., & Weiss, G. A. (2001). Combinatorial alanine-scanning. Current Opinion in Chemical Biology, 5(3), 302–307.CrossRefPubMedGoogle Scholar
  20. 20.
    Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132.CrossRefPubMedGoogle Scholar
  21. 21.
    Okazaki, S., Suzuki, A., Mizushima, T., Komeda, H., Asano, Y., & Yamane, T. (2008). Structures of D-amino-acid amidase complexed with L-phenylalanine and with L-phenylalanine amide: Insight into the D-stereospecificity of D-amino-acid amidase from Ochrobactrum anthropi SV3. Acta Crystallographica Section D: Biological Crystallography, 64(3), 331–334.  https://doi.org/10.1107/S0907444907067479.CrossRefGoogle Scholar
  22. 22.
    Andrew, D., & Mesecar, D. E. K. J. (2000). A new model for protein stereospecificity T. Nature, 403, 614–615.Google Scholar
  23. 23.
    Wombacher, R., Keiper, S., Suhm, S., Serganov, A., Patel, D. J., & Jäschke, A. (2006). Control of stereoselectivity in an enzymatic reaction by backdoor access. Angewandte Chemie International Edition, 3(4515), 2469–2472.  https://doi.org/10.1002/anie.200503280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yasmeen Yousif Ahmed Elyas
    • 1
  • Kazusa Miyatani
    • 2
  • Katsuhiko Shimizu
    • 3
  • Jiro Arima
    • 4
  1. 1.United Graduate School of Agricultural SciencesTottori UniversityTottoriJapan
  2. 2.Graduate School of Agricultural SciencesTottori UniversityTottoriJapan
  3. 3.Division of Regional Contribution and Lifelong Learning, Organization of Regional Industrial-Academic CooperationTottori UniversityTottoriJapan
  4. 4.Department of Agricultural, Life and Environmental Sciences, Faculty of AgricultureTottori UniversityTottoriJapan

Personalised recommendations