Advertisement

Molecular Biotechnology

, Volume 60, Issue 8, pp 595–600 | Cite as

Molecular Cloning and Biochemical Characterization of Iron Superoxide Dismutase from Leishmania braziliensis

  • Camila C. B. Brito
  • Fernando V. Maluf
  • Gustavo M. A. de Lima
  • Rafael V. C. Guido
  • Marcelo S. Castilho
Original Paper
  • 117 Downloads

Abstract

Leishmaniasis is one of the most important neglected tropical diseases, with a broad spectrum of clinical manifestations. Among the clinical manifestations of the disease, cutaneous leishmaniasis, caused by species of Leishmania braziliensis, presents wide distribution in Brazil. In this work, we performed the cloning, expression, and purification of the enzyme superoxide dismutase of Leishmania braziliensis (LbSOD-B2) considered a promising target for the search of new compounds against leishmaniasis. In vitro assays based on pyrogallol oxidation showed that LbSOD-B2 is most active around pH 8 and hydrogen peroxide is a LbSOD-B2 inhibitor at low millimolar range (IC50 = 1 mM).

Keywords

Leishmania braziliensis Superoxide dismutase Heterologous expression Kinetic assay 

Notes

Acknowledgements

The authors are grateful for the academic support of PPGBiotec-UEFS and the Grants from CNPq 306277/2014-0, FAPESB BOL0688/2014, and FAPESP 2013/07600-3.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

References

  1. 1.
    de Menezes, J. P. B., Guedes, C. E. S., Petersen, A. L. D. O. A., Fraga, D. B. M., & Veras, P. S. T. (2015). Advances in development of new treatment for Leishmaniasis. BioMed Research International, 2015, 1–12.  https://doi.org/10.1155/2015/815023.Google Scholar
  2. 2.
    Gutierrez, F. R. S., Mineo, T. W. P., Pavanelli, W. R., Guedes, P. M. M., & Silva, J. S. (2009). The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Memórias do Instituto Oswaldo Cruz, 104 Suppl(Gilroy 2005), 236–245.CrossRefGoogle Scholar
  3. 3.
    Tessarollo, N. G., Andrade, J. M., Moreira, D. S., & Murta, S. M. F. (2015). Functional analysis of iron superoxide dismutase-A in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitology International, 64(2), 125–129.  https://doi.org/10.1016/j.parint.2014.11.001.CrossRefGoogle Scholar
  4. 4.
    NASSIF, P.W., De Mello, T. F. P., Navasconi, T. R., Mota, C. A., Demarchi, I. G., Aristides, S. M. A., Lonardoni, M. V. C. (2017). Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: A systematic review. Parasitology.  https://doi.org/10.1017/S0031182017000385.Google Scholar
  5. 5.
    WHO. (2015). Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases 2015. Investing to overcome the global impact of neglected tropical diseases: Third WHO report on neglected diseases. ISBN 978 92 4 156486 1.Google Scholar
  6. 6.
    Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research.  https://doi.org/10.12688/f1000research.11120.1.Google Scholar
  7. 7.
    Longoni, S. S., Marín, C., & Sánchez-Moreno, M. (2014). Excreted Leishmania peruviana and Leishmania amazonensis iron-superoxide dismutase purification: Specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radical Biology and Medicine, 69, 26–34.  https://doi.org/10.1016/j.freeradbiomed.2014.01.012.CrossRefGoogle Scholar
  8. 8.
    Sanchez-Moreno, M., Gomez-Contreras, F., Navarro, P., Marin, C., Ramirez-Macias, I., Rosales, M. J., et al. (2015). Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis. Parasitology, 142(10), 1115–1129.  https://doi.org/10.1017/S0031182015000657.CrossRefGoogle Scholar
  9. 9.
    PAHO/WHO. (2015). Informe Epidemiológico das Américas. Report Leishmaniases No, 3, 3–7.  https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
  10. 10.
    Yasinzai, M., Khan, M., Nadhman, A., & Shahnaz, G. (2013). Drug resistance in leishmaniasis: Current drug-delivery systems and future perspectives. Future Medicinal Chemistry, 5(15), 1877–1888.  https://doi.org/10.4155/fmc.13.143.CrossRefGoogle Scholar
  11. 11.
    Mouttaki, T., Morales-Yuste, M., Merino-Espinosa, G., Chiheb, S., Fellah, H., Martin-Sanchez, J., & Riyad, M. (2014). Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays. Parasites & Vectors, 7, 420.  https://doi.org/10.1186/1756-3305-7-420.CrossRefGoogle Scholar
  12. 12.
    Borborema, S. E. T., Osso Junior, J. A., de Andrade Junior, H. F., & do Nascimento, N. D. (2013). Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice. Memorias do Instituto Oswaldo Cruz, 108(5), 623–630.  https://doi.org/10.1590/0074-0276108052013014.CrossRefGoogle Scholar
  13. 13.
    Mar Castro del M., Cossio, A., Velasco, C., Osorio, L., Saravia, N., & Cloetens, L. (2017). Risk factors for therapeutic failure to meglumine antimoniate and miltefosine in adults and children with cutaneous leishmaniasis in Colombia: A cohort study. PLoS Neglected Tropical Diseases, 11(4), e0005515.  https://doi.org/10.1371/journal.pntd.0005515.CrossRefGoogle Scholar
  14. 14.
    de Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015). Cutaneous Leishmaniasis: Recent developments in diagnosis and management. American Journal of Clinical Dermatology, 16(2), 99–109.  https://doi.org/10.1007/s40257-015-0114-z.CrossRefGoogle Scholar
  15. 15.
    Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of Leishmaniasis: Current status and future directions. Molecular Biology International, 2011, 1–23.  https://doi.org/10.4061/2011/571242.CrossRefGoogle Scholar
  16. 16.
    Vanaerschot, M., de Doncker, S., Rijal, S., Maes, L., Dujardin, J. C., & Decuypere, S. (2011). Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS ONE, 6(8), 1–5.  https://doi.org/10.1371/journal.pone.0023120.CrossRefGoogle Scholar
  17. 17.
    Van Assche, T., Deschacht, M., da Luz, RaI., Maes, L., & Cos, P. (2011). Leishmania-macrophage interactions: Insights into the redox biology. Free Radical Biology & Medicine, 51(2), 337–351.  https://doi.org/10.1016/j.freeradbiomed.2011.05.011.CrossRefGoogle Scholar
  18. 18.
    Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: A target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine, 25(1–2), 211–220.  https://doi.org/10.1016/j.mam.2004.02.021.CrossRefGoogle Scholar
  19. 19.
    Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A. F., Teixeira, M., & Valentine, J. S. (2014). Superoxide dismutases and superoxide reductases. Chemical Reviews, 114(7), 3854–3918.  https://doi.org/10.1021/cr4005296.CrossRefGoogle Scholar
  20. 20.
    Plewes, K. A., Barr, S. D., & Gedamu, L. (2003). Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infection and Immunity, 71(10), 5910–5920.  https://doi.org/10.1128/IAI.71.10.5910.CrossRefGoogle Scholar
  21. 21.
    Romero, A. H., Medina, R., Alcala, A., García-Marchan, Y., Núñez-Duran, J., Leañez, J., et al. (2017). Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. European Journal of Medicinal Chemistry, 127, 606–620.  https://doi.org/10.1016/j.ejmech.2017.01.022.CrossRefGoogle Scholar
  22. 22.
    O’Shea, I. P., Shahed, M., Aguilera-Venegas, B., & Wilkinson, S. R. (2016). Evaluating 5-nitrothiazoles as trypanocidal agents. Antimicrobial Agents and Chemotherapy, 60(2), 1137–1140.  https://doi.org/10.1128/AAC.02006-15.CrossRefGoogle Scholar
  23. 23.
    Papadopoulou, M. V., Bloomer, W. D., Rosenzweig, H. S., Wilkinson, S. R., Szular, J., & Kaiser, M. (2016). Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. European Journal of Medicinal Chemistry, 117, 179–186.  https://doi.org/10.1016/j.ejmech.2016.04.010.CrossRefGoogle Scholar
  24. 24.
    Sánchez-moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Ramírez-macías, I., Olmo, F., et al. (2012). In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo [g] phthalazine derivatives against leishmania infantum and leishmania braziliensis species. Journal of Antimicrobial Chemotherapy, 67(2), 387–397.  https://doi.org/10.1093/jac/dkr480.CrossRefGoogle Scholar
  25. 25.
    Froger, A., & Hall, J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments.  https://doi.org/10.3791/253.Google Scholar
  26. 26.
    Aslanidis, C., & Dejong, P. J. (1990). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Research, 18(20), 6069–6074.  https://doi.org/10.1093/nar/18.20.6069.CrossRefGoogle Scholar
  27. 27.
    Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.  https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.CrossRefGoogle Scholar
  28. 28.
    Stols, L., Gu, M., Dieckman, L., Raffen, R., Collart, F. R., & Donnelly, M. I. (2002). A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expression and Purification, 25(1), 8–15.  https://doi.org/10.1006/prep.2001.1603.CrossRefGoogle Scholar
  29. 29.
    Weeks, S. D., Drinker, M., & Loll, P. J. (2007). Ligation independent cloning vectors for expression of SUMO fusions. Protein Expression and Purification, 53(1), 40–50.  https://doi.org/10.1016/j.pep.2006.12.006.CrossRefGoogle Scholar
  30. 30.
    Fang, J., Chen, L., Cheng, B., & Fan, J. (2013). Engineering soluble tobacco etch virus protease accompanies the loss of stability. Protein Expression and Purification, 92(1), 29–35.  https://doi.org/10.1016/j.pep.2013.08.015.CrossRefGoogle Scholar
  31. 31.
    Sun, C., Liang, J., Shi, R., Gao, X., Zhang, R., Hong, F., et al. (2012). Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives. Protein Expression and Purification, 82(1), 226–231.  https://doi.org/10.1016/j.pep.2012.01.005.CrossRefGoogle Scholar
  32. 32.
    Faúndez, M., Rojas, M., Bohle, P., Reyes, C., Letelier, M. E., Aliaga, M. E., et al. (2011). Pyrogallol red oxidation induced by superoxide radicals: Application to evaluate redox cycling of nitro compounds. Analytical Biochemistry, 419(2), 284–291.  https://doi.org/10.1016/j.ab.2011.08.048.CrossRefGoogle Scholar
  33. 33.
    Roth, E. F., & Gilbert, H. S. (1984). The pyrogallol assay for superoxide dismutase: Absence of a glutathione artifact. Analytical Biochemistry, 137(1), 50–53.CrossRefGoogle Scholar
  34. 34.
    Meier, B., Michel, C., Saran, M., Parak, F., Rotilioii, G., & Oberschleissheim, D. (1995). Kinetic and spectroscopic studies on a superoxide dismutase from Propionibacterium shermanha that is active with iron or manganese: pH-dependence. Biochemical Journal, 310, 945–950.CrossRefGoogle Scholar
  35. 35.
    Jr, W. B., & Fridovich, I. (1987). Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry, 26(5), 1251–1257.CrossRefGoogle Scholar
  36. 36.
    Gratepanche, S., Ménage, S., Touati, D., Wintjens, R., Delplace, P., Fontecave, M., et al. (2002). Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 120(2), 237–246.  https://doi.org/10.1016/S0166-6851(02)00004-X.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de pós-graduação em BiotecnologiaUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  2. 2.Sao Carlos Institute of PhysicsUniversity of Sao PauloSão CarlosBrazil
  3. 3.Faculdade de FarmáciaUniversidade Federal da BahiaSalvadorBrazil
  4. 4.MAX IV LaboratoryLund UniversityLundSweden

Personalised recommendations