Molecular Biotechnology

, Volume 60, Issue 8, pp 585–594 | Cite as

Soluble Production of Human Recombinant VEGF-A121 by Using SUMO Fusion Technology in Escherichia coli

  • Rufus Vinod Munawar Samuel
  • Syeda Yumna Farrukh
  • Sadia Rehmat
  • Muhammad Umair Hanif
  • Syed Shoaib Ahmed
  • Syed Ghulam Musharraf
  • Faiza Gul Durrani
  • Mahjabeen Saleem
  • Roquyya GulEmail author
Original Paper


Human recombinant vascular endothelial growth factor-A121 (hrVEGF-A121) has applications in pharmaceutical industry especially in regenerative medicine. Here, we report the expression, purification, and characterization of hrVEGF-A121 in Escherichia coli expression system using human small ubiquitin-related modifier-3 (hSUMO3) fusion partner. Total RNA was isolated from healthy human gingival tissue, VEGF-A121 gene was RT-PCR amplified, and hSUMO3 gene was tagged at N-terminus. The fusion gene (SUMO3-VEGF-A121) was cloned in pET-22b(+) expression vector and transferred into E. coli strains; BL21 codon + and Rosetta-gami B(DE3). The hrVEGF-A121 expression was optimized for temperature, IPTG concentration, and time in Terrific Broth (TB). The positive transformants were sequenced and hrVEGF-A121 nucleotide sequence was submitted to Genbank (Accession No. KT581010). Approximately 40% of total cell protein expression was observed in soluble form on 15% SDS-PAGE. The hSUMO3 was cleaved from hrVEGF-A121 with SUMO protease and purified by Fast Protein Liquid Chromatography using anionic Hi-trap Resource Q column. From 100 ml TB, ~ 25.5% and ~ 6.8 mg of hrVEGF-A121 protein was recovered. The dimerized hrVEGF-A121 was characterized by Native PAGE and Western blot, using human anti-VEGF-A antibody and ESI-MS showed dimeric hrVEGF-A121 at 31,015 Da. The biological activity of hrVEGF-A121 was assessed in vitro by MTT and cell viability assay and observed to be bioactive.


HrVEGF-A121 hSUMO3 Rosetta-gami B (DE3) Fast protein liquid chromatography ESI-MS MTT 


Author Contributions

All the authors have seen and approved the manuscript and performed their responsibilities in designing the project, experimental work, and manuscript write up.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no financial or commercial conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12033_2018_94_MOESM1_ESM.docx (377 kb)
Supplementary material 1 (DOCX 377 KB)


  1. 1.
    Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56(4), 549–580.CrossRefPubMedGoogle Scholar
  2. 2.
    Yazdanfar, M., Bandehpour, M., Yarian, F., Koochaki, A., Parivar, K., & Kazemi, B. (2010). Cloning and expression of human vascular endothelial growth factor gene and inhibition of its expression by antisense in prokaryotic system. Daru, 18(4), 281–285.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Brown, A. P., Citrin, D. E., & Camphausen, K. A. (2008). Clinical biomarkers of angiogenesis inhibition. Cancer Metastasis Reviews, 27(3), 415–434.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., & Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380(6573), 435–439.CrossRefGoogle Scholar
  5. 5.
    Wu, H.-P., Feng, G.-S., & Tian, Y. (2005). Hepatic artery infusion of antisense oligodeoxynucleotide and lipiodol mixture transfect liver cancer in rats. World Journal of Gastroenterology, 11(16), 2408–2412.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., Vlodavsky, I., Keshet, E., & Neufeld, G. (1997). VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. Journal of Biological Chemistry, 272(11), 7151–7158.CrossRefPubMedGoogle Scholar
  7. 7.
    Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M. S., Ehrlich, H. P., & Brem, H. (2009). The role of vascular endothelial growth factor in wound healing. Journal of Surgical Research, 153(2), 347–358.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi, H. J., Armaiz Pena, G. N., Pradeep, S., Cho, M. S., Coleman, R. L., & Sood, A. K. (2015). Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Reviews, 34(1), 19–40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Danis, R. P., Ciulla, T. A., Criswell, M., & Pratt, L. (2001). Anti-angiogenic therapy of proliferative diabetic retinopathy. Expert Opinion on Pharmacotherapy, 2(3), 395–407.CrossRefPubMedGoogle Scholar
  10. 10.
    Taktak-BenAmar, A., Morjen, M., Mabrouk, B., Abdelmaksoud-Dammak, H., Guerfali, R., Fourati-Masmoudi, M., Marrakchi, N., and Gargouri, A. (2017). Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF165 in E. coli. AMB Express, 7(1), 33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee, G. Y., Jung, W. W., Kang, C. S., & Bang, I. S. (2006). Expression and characterization of human vascular endothelial growth factor (VEGF165) in insect cells. Protein Expression and Purification, 46(2), 503–509.CrossRefPubMedGoogle Scholar
  12. 12.
    Cohen, T., Gitay-Goren, H., Neufeld, G., & Levi, B.-Z. (1992). High levels of biologically active vascular endothelial growth factor (VEGF) are produced by the baculovirus expression system. Growth Factors, 7(2), 131–138.CrossRefPubMedGoogle Scholar
  13. 13.
    Mohanraj, D., Olson, T., & Ramakrishnan, S. (1995). Expression of biologically active human vascular endothelial growth factor in yeast. Growth Factors, 12(1), 17–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee, S. B., Park, J. S., Lee, S., Park, J., Yu, S., Kim, H., Kim, D., Byun, T. H., Baek, K., Ahn, Y. J., & Yoon, J. (2008). Overproduction of recombinant human VEGF (vascular endothelial growth factor) in Chinese hamster ovary cells. Journal of Microbiology and Biotechnology, 18(1), 183–187.PubMedGoogle Scholar
  15. 15.
    Hu, Z. M., Ma, L., Zhou, M. Q., Gao, J. M., & Wang, X. N. (2006). Refolding and purification of recombinant human VEGF-121 expressed as inclusion bodies in Escherichia coli. Nan Fang Yi Ke. Da Xue Xue Bao, 26(8), 1083–1086.Google Scholar
  16. 16.
    Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system. Frontiers in Microbiology, 5, 63.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ramos, R., Domingues, L., & Gama, M. (2010). Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expression and Purification, 71(1), 1–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17(4), 353–358.CrossRefPubMedGoogle Scholar
  19. 19.
    Bogachek, M. V., Chen, Y., Kulak, M. V., Woodfield, G. W., Cyr, A. R., Park, J. M., Spanheimer, P. M., Li, Y., Li, T., & Weigel, R. J. (2014). Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell, 25(6), 748–761.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morera, Y., Lamdan, H., Bequet, M., Ayala, M., Rojas, G., Munoz, Y., & Gavilondo, J. V. (2006). Biologically active vascular endothelial growth factor as a bacterial recombinant glutathione S-transferase fusion protein. Biotechnology and Applied Biochemistry, 44(1), 45–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Kazemi-Lomedasht, F., Behdani, M., Pooshang Bagheri, K., Habibi Anbouhi, M., Abolhassani, M., Khanahmad, H., Shahbazzadeh, D., & Mirzahoseini, H. (2014). Expression and purification of functional human vascular endothelial growth factor-A121; the most important angiogenesis factor. Advanced Pharmaceutical Bulletin, 4(4), 323–328.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y. S., Adamis, A. P., & D’Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. Journal of Biological Chemistry, 271(7), 3877–3883.CrossRefPubMedGoogle Scholar
  23. 23.
    Arcondéguy, T., Lacazette, E., Millevoi, S., Prats, H., & Touriol, C. (2013). VEGF-A mRNA processing, stability and translation: A paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Research, 41(17), 7997–8010.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yin, J., Li, G., Ren, X., & Herrler, G. (2007). Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 127(3), 335–347.CrossRefPubMedGoogle Scholar
  25. 25.
    Sorensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grosjean, H., & Fiers, W. (1982). Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18(3), 199–209.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang, Z., Li, H., Guan, W., Ling, H., Wang, Z., Mu, T., Shuler, F. D., & Fang, X. (2010). Human SUMO fusion systems enhance protein expression and solubility. Protein Expression and Purification, 73(2), 203–208.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee, C. D., Sun, H. C., Hu, S. M., Chiu, C. F., Homhuan, A., Liang, S. M., Leng, C. H., & Wang, T. F. (2008). An improved SUMO fusion protein system for effective production of native proteins. Protein Science, 17(7), 1241–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73, 355–382.CrossRefGoogle Scholar
  30. 30.
    Li, J. F., Cui, X. W., Ji, H. Y., Qiu, T., Ji, X. M., Du, M. X., Wu, H. T., Xu, X. Z., & Zhang, S. Q. (2011). High efficient expression of bioactive human BMP-14 in E. coli using SUMO fusion partner. The Protein Journal, 30(8), 592–597.CrossRefPubMedGoogle Scholar
  31. 31.
    Hanif, M. U., Yaseen, A., Gul, R., Mirza, M. U., Nawaz, M. H., Ahmed, S. S., Aziz, S., Chaudhary, S., Khan, A. A., & Shoaib, M. (2018). Small ubiquitin-like modifier protein 3 enhances the solubilization of human bone morphogenetic protein 2 in E. coli. Applied Biochemistry and Biotechnology. Scholar
  32. 32.
    Prakash, A., Parsons, S. J., Kyle, S., & McPherson, M. J. (2012). Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner. Microbial Cell Factories, 11(1), 92.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jaganaman, S., Pinto, A., Tarasev, M., & Ballou, D. P. (2007). High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expression Purification, 52(2), 273–279.CrossRefPubMedGoogle Scholar
  34. 34.
    Bratanov, D., Balandin, T., Round, E., Shevchenko, V., Gushchin, I., Polovinkin, V., Borshchevskiy, V., & Gordeliy, V. (2015). An approach to heterologous expression of membrane proteins. The case of Bacteriorhodopsin. PLoS ONE, 10(6), e0128390.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shen, Y., Lao, X. G., Chen, Y., Zhang, H. Z., & Xu, X. X. (2007). High-level expression of Cecropin X in Escherichia coli. International Journal of Molecular Sciences, 8(6), 478–491.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Das, K. M., Banerjee, S., Shekhar, N., Damodaran, K., Nair, R., Somani, S., Raiker, V. P., Jain, S., & Padmanabhan, S. (2011). Cloning, soluble expression and purification of high yield recombinant hGMCSF in Escherichia coli. International Journal of Molecular Sciences, 12(3), 2064–2076.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Durrani, F. G., Gul, R., Sadaf, S., & Akhtar, M. W. (2015). Expression and rapid purification of recombinant biologically active ovine growth hormone with DsbA targeting to Escherichia coli inner membrane. Applied Microbiology and Biotechnology, 99(16), 6791–6801.CrossRefPubMedGoogle Scholar
  38. 38.
    Becker, P. B., Gloss, B., Schmid, W., Strahle, U., & Schutz, G. (1986). In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature, 324(6098), 686–688.CrossRefPubMedGoogle Scholar
  39. 39.
    Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., & Butt, T. R. (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Science, 15(1), 182–189.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Scrofani, S. D., Fabri, L. J., Xu, P., Maccarone, P., & Nash, A. D. (2000). Purification and refolding of vascular endothelial growth factor-B. Protein Science, 9(10), 2018–2025.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yuan, A., Lin, C. Y., Chou, C. H., Shih, C. M., Chen, C. Y., Cheng, H. W., Chen, Y. F., Chen, J. J., Chen, J. H., Yang, P. C., & Chang, C. (2011). Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS ONE, 6(1), e16062.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yang, Y., Zhang, S., Howe, K., Wilson, D. B., Moser, F., Irwin, D., & Thannhauser, T. W. (2007). A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. Journal of Biomolecular Techniques, 18(4), 226–237.PubMedGoogle Scholar
  43. 43.
    Shi, X., Chen, G., Xing, H., Weng, D., Bai, X., & Ma, D. (2007). VEGF-C, VEGFR-3, and COX-2 enhances growth and metastasis of human cervical carcinoma cell lines in vitro. Oncology Reports, 18(1), 241–247.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rufus Vinod Munawar Samuel
    • 1
  • Syeda Yumna Farrukh
    • 1
  • Sadia Rehmat
    • 1
  • Muhammad Umair Hanif
    • 1
  • Syed Shoaib Ahmed
    • 1
  • Syed Ghulam Musharraf
    • 2
  • Faiza Gul Durrani
    • 3
  • Mahjabeen Saleem
    • 4
  • Roquyya Gul
    • 1
    Email author
  1. 1.Institute of Molecular Biology and Biotechnology/Centre for Research in Molecular MedicineThe University of LahoreLahorePakistan
  2. 2.Dr. Panjwani Center for Molecular Medicine and Drug Research/International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
  3. 3.School of Biological SciencesUniversity of the PunjabLahorePakistan
  4. 4.Institute of Biochemistry and BiotechnologyUniversity of the PunjabLahorePakistan

Personalised recommendations