Molecular Biotechnology

, Volume 60, Issue 7, pp 455–467 | Cite as

Homing Genes Expression in Fucosyltransferase VI-Treated Umbilical Cord Blood CD133+ Cells which Expanded on Protein-Coated Nanoscaffolds

  • Amir Atashi
  • Maryam IslamiEmail author
  • Yousef Mortazavi
  • Masoud Soleimani
Original Paper


Umbilical cord blood (UCB)-derived hematopoietic stem cells (HSCs) are considered because of their self-renewing, differentiating, proliferating, and readily available properties. Moreover, HSCsʼ homing to the hematopoietic microenvironment is an important step in their transplantation process. But low content of progenitor cells in one unit of UCB and defect in the bone marrow (BM) homing limit their applications. Hence, we decided to correct this deficiency with ex vivo incubation of CD133+ cells using fucosyltransferase VI and GDP-fucose. Then C-X-C chemokines receptor-4 (CXCR4), very late activation antigen-4 (VLA4), very late activation antigen-5 (VLA5), lymphocyte function-associated antigen-1 (LFA-1), and E-cadherin (E-cad) genes expressions were investigated with the goal of homing evaluation. The purity of MACS isolated CD133+ cells and confirmation of fucosylation were done by flow cytometry, and the viability of cells seeded on protein-coated poly l-lactic acid (PLLA) scaffold was proven via MTT assay. Scanning electron microscopy (SEM), CFU assays, and expression assays of CXCR4, VLA4, VLA5, LFA-1 and E-cad by real-time PCR were performed, too. Flow cytometry data showed that isolated cells were suitable for fucosyltransferase VI (FT-VI) incubation and expansion on nanoscaffolds. MTT, CFU assays, and SEM micrographs demonstrated fibronectin (FN)–collagen–selectin (FCS)-coated scaffold serve as best environment for viability, clonogenicity, and cell attachment. High levels of homing genes expression were also observed in cells seeded on FCS-coated scaffolds. Also, CXCR4 flow cytometry analysis confirmed real-time data. FCS-PLLA scaffolds provided optimal conditions for viability of FT-VI-treated CD133+ cells, and clonogenicity with the goal of improving homing following UCB-HSCs transplantation.


Cord blood stem cells Fucosyltransferase CXCR4 VLA4 VLA5 



The authors would like to thank Bonyakhteh Research Center for providing laboratory facilities. The authors declare that there is no conflict of interest regarding the publication of this article.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bari, S., Seah, K. K., Poon, Z., Cheung, A. M., Fan, X., Ong, S. Y., … Hwang, W. Y. (2015). Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biology of Blood and Marrow Transplantation, 21(6), 1008–1019.CrossRefPubMedGoogle Scholar
  2. 2.
    Brizzi, M. F., Tarone, G., & Defilippi, P. (2012). Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Current Opinion in Cell Biology, 24(5), 645–651.CrossRefPubMedGoogle Scholar
  3. 3.
    Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. Methods in Molecular Biology, 695, 17–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Celebi, B., Mantovani, D., & Pineault, N. (2011). Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomedical Materials, 6(5), 055011.CrossRefPubMedGoogle Scholar
  5. 5.
    Colombo, E., Calcaterra, F., Cappelletti, M., Mavilio, D., & Della Bella, S. (2013). Comparison of fibronectin and collagen in supporting the isolation and expansion of endothelial progenitor cells from human adult peripheral blood. PLoS ONE, 8(6), e66734.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Connor, N. S., Aubin, J. E., & Sodek, J. (1983). Independent expression of type I collagen and fibronectin by normal fibroblast-like cells. Journal of Cell Science, 63, 233–244.PubMedGoogle Scholar
  7. 7.
    Denning-Kendall, P., Singha, S., Bradley, B., & Hows, J. (2003). Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells, 21(1), 61–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Dravid, G., & Rao, S. G. A. (2002). Ex vivo expansion of stem cells from umbilical cord blood: Expression of cell adhesion molecules. Stem Cells, 20(2), 183–189.CrossRefPubMedGoogle Scholar
  9. 9.
    Duan, H., Cheng, L., Sun, X., Wu, Y., Hu, L., Wang, J., … Lu, G. (2006). LFA-1 and VLA-4 involved in human high proliferative potential-endothelial progenitor cells homing to ischemic tissue. Thrombosis and Haemostasis, 96(6), 807–815.CrossRefPubMedGoogle Scholar
  10. 10.
    Eskandari, F., Allahverdi, A., Nasiri, H., Azad, M., Kalantari, N., Soleimani, M., & Zare-Zardini, H. (2015). Nanofiber expansion of umbilical cord blood hematopoietic stem cells. Iranian Journal of Pediatric Hematology and Oncology, 5(4), 170–178.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Feng, Q., Chai, C., Jiang, X. S., Leong, K. W., & Mao, H. Q. (2006). Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. Journal of Biomedical Materials Research Part A, 78(4), 781–791.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ferreira, M. S., Jahnen-Dechent, W., Labude, N., Bovi, M., Hieronymus, T., Zenke, M., … Neuss, S. (2012). Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials, 33(29), 6987–6997.CrossRefPubMedGoogle Scholar
  13. 13.
    Girbl, T., Lunzer, V., Greil, R., Namberger, K., & Hartmann, T. N. (2014). The CXCR4 and adhesion molecule expression of CD34+ hematopoietic cells mobilized by “on-demand” addition of plerixafor to granulocyte–colony-stimulating factor. Transfusion, 54(9), 2325–2335.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Greenberg, A. W., Kerr, W. G., & Hammer, D. A. (2000). Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood, 95(2), 478–486.PubMedGoogle Scholar
  15. 15.
    Hofmeister, C. C., Zhang, J., Knight, K. L., Le, P., & Stiff, P. J. (2007). Ex vivo expansion of umbilical cord blood stem cells for transplantation: Growing knowledge from the hematopoietic niche. Bone Marrow Transplant, 39(1), 11–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Islami M, Mortazavi Y, Nadri S, Soleimani M (2017) In vitro expansion of CD 133+ cells derived from umbilical cord blood in poly-L-lactic acid (PLLA) scaffold coated with fibronectin and collagen. Artificial Cells, Nanomedicine, and Biotechnology. CrossRefPubMedGoogle Scholar
  17. 17.
    Katayama, Y., Hidalgo, A., Furie, B. C., Vestweber, D., Furie, B., & Frenette, P. S. (2003). PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: Evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood, 102(6), 2060–2067.CrossRefGoogle Scholar
  18. 18.
    Kelly, S. S., Sola, C. B., de Lima, M., & Shpall, E. (2009). Ex vivo expansion of cord blood. Bone Marrow Transplant, 44(10), 673–681.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klamer, S., & Voermans, C. (2014). The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhesion & Migration, 8(6), 563–577.CrossRefGoogle Scholar
  20. 20.
    Kollet, O., Spiegel, A., Peled, A., Petit, I., Byk, T., Hershkoviz, R., … Lapidot, T. (2001). Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood, 97(10), 3283–3291.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee, S. T., Yun, J. I., Jo, Y. S., Mochizuki, M., van der Vlies, A. J., Kontos, S., … Hubbell, J. A. (2010). Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials, 31(6), 1219–1226.CrossRefPubMedGoogle Scholar
  22. 22.
    Ma, Z., Gao, C., & Shen, J. (2003). Surface modification of poly-L-lactic acid (PLLA) membrane by grafting acrylamide: An effective way to improve cytocompatibility for chondrocytes. Journal of Biomaterials Science, Polymer Edition, 14(1), 13–25.CrossRefGoogle Scholar
  23. 23.
    McCarthy, J., & Turley, E. A. (1993). Effects of extracellular matrix components on cell locomotion. Critical Reviews in Oral Biology & Medicine, 4(5), 619–637.CrossRefGoogle Scholar
  24. 24.
    Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., … Kishimoto, T. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382(6592), 635–638.CrossRefPubMedGoogle Scholar
  25. 25.
    Ngo, H. T., Leleu, X., Lee, J., Jia, X., Melhem, M., Runnels, J., … Ghobrial, I. M. (2008). SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood, 112(1), 150–158.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nie, Y., Han, Y.-C., & Zou, Y.-R. (2008). CXCR4 is required for the quiescence of primitive hematopoietic cells. The Journal of Experimental Medicine, 205(4), 777.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G. V., & Wolf, N. S. (1995). The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proceedings of the National Academy of Sciences, 92(21), 9647–9651.CrossRefGoogle Scholar
  28. 28.
    Peled, A., Kollet, O., Ponomaryov, T., Petit, I., Franitza, S., Grabovsky, V., … Lapidot, T. (2000). The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 95(11), 3289–3296.PubMedGoogle Scholar
  29. 29.
    Popat, U., Mehta, R. S., Rezvani, K., Fox, P., Kondo, K., Marin, D., … Shpall, E. J. (2015). Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood, 125(19), 2885–2892.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Raymond, K., Deugnier, M. A., Faraldo, M. M., & Glukhova, M. A. (2009). Adhesion within the stem cell niches. Current Opinion in Cell Biology, 21(5), 623–629.CrossRefPubMedGoogle Scholar
  31. 31.
    Riedl, E., Stockl, J., Majdic, O., Scheinecker, C., Knapp, W., & Strobl, H. (2000). Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation. Blood, 96(13), 4276–4284.PubMedGoogle Scholar
  32. 32.
    Sabaghi, F., Shamsasenjan, K., Movasaghpour, A. A., Amirizadeh, N., Nikougoftar, M., & Bagheri, N. (2016). Evaluation of human cord blood CD34+ hematopoietic stem cell differentiation to megakaryocyte on aminated PES nanofiber scaffold compare to 2-D culture system. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1062–1068.PubMedGoogle Scholar
  33. 33.
    Weeks, S., Kulkarni, A., Smith, H., Whittall, C., Yang, Y., & Middleton, J. (2012). The effects of chemokine, adhesion and extracellular matrix molecules on binding of mesenchymal stromal cells to poly(l-lactic acid). Cytotherapy, 14(9), 1080–1088.CrossRefPubMedGoogle Scholar
  34. 34.
    Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., … Ratajczak, M. Z. (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 105(1), 40–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Zeltinger, J., Sherwood, J. K., Graham, D. A., Mueller, R., & Griffith, L. G. (2001). Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering, 7(5), 557–572.CrossRefPubMedGoogle Scholar
  36. 36.
    Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Stem Cell and Tissue Engineering Research CenterShahroud University of Medical SciencesShahroudIran
  2. 2.Medical Biotechnology and Nanotechnology DepartmentZanjan University of Medical SciencesZanjanIran
  3. 3.Cancer Gene Therapy Research CenterZanjan University of Medical SciencesZanjanIran
  4. 4.Department of Hematology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations