Advertisement

Molecular Biotechnology

, Volume 60, Issue 4, pp 329–338 | Cite as

Genome Editing in Stem Cells for Disease Therapeutics

  • Minjung Song
  • Suresh Ramakrishna
Review

Abstract

Programmable nucleases including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein have tremendous potential biological and therapeutic applications as novel genome editing tools. These nucleases enable precise modification of the gene of interest by disruption, insertion, or correction. The application of genome editing technology to pluripotent stem cells or hematopoietic stem cells has the potential to remarkably advance the contribution of this technology to life sciences. Specifically, disease models can be generated and effective therapeutics can be developed with great efficiency and speed. Here we review the characteristics and mechanisms of each programmable nuclease. In addition, we review the applications of these nucleases to stem cells for disease therapies and summarize key studies of interest.

Keywords

Zinc finger nucleases Transcription activator-like effector nucleases Clustered regularly interspaced short palindrome repeat associated system Induced pluripotent stem cells Hematopoietic stem cells 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2017R1D1A1A02018480 and 2017M3A9C6061361). Medical Research Center (2017R1A5A2015395), funded by the National Research Foundation of Korea (NRF) of the Ministry of Science, ICT and Future Planning, Republic of Korea and Bio and Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government (MSIP and MOHW) (2017M3A9E4048172). The author would like to thank Ms. Hee-Jung Seo and Jisu Song from Silla University for their figure illustrations. The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636–646.CrossRefGoogle Scholar
  2. 2.
    Cox, D. B., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21(2), 121–131.CrossRefGoogle Scholar
  3. 3.
    Travis, J. (2015). Making the cut. Science, 350(6267), 1456–1457.CrossRefGoogle Scholar
  4. 4.
    Product Pipeline of Sangamo Therapeutics [database on the Internet]. Sangamo therapeutics. Available from: http://www.sangamo.com/product-pipeline. Accessed April 04, 2017.
  5. 5.
    Chen, F., Pruett-Miller, S. M., Huang, Y., Gjoka, M., Duda, K., Taunton, J., et al. (2011). High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods, 8(9), 753–755.CrossRefGoogle Scholar
  6. 6.
    Bitinaite, J., Wah, D. A., Aggarwal, A. K., & Schildkraut, I. (1998). FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10570–10575.CrossRefGoogle Scholar
  7. 7.
    Tupler, R., Perini, G., & Green, M. R. (2001). Expressing the human genome. Nature, 409(6822), 832–833.CrossRefGoogle Scholar
  8. 8.
    Wolfe, S. A., Nekludova, L., & Pabo, C. O. (2000). DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics and Biomolecular Structure, 29, 183–212.CrossRefGoogle Scholar
  9. 9.
    Handel, E. M., Gellhaus, K., Khan, K., Bednarski, C., Cornu, T. I., Muller-Lerch, F., et al. (2012). Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Human Gene Therapy, 23(3), 321–329.CrossRefGoogle Scholar
  10. 10.
    Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843–1846.CrossRefGoogle Scholar
  11. 11.
    Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., et al. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Molecular Plant, 6(4), 1318–1330.CrossRefGoogle Scholar
  12. 12.
    Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143–148.CrossRefGoogle Scholar
  13. 13.
    Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501.CrossRefGoogle Scholar
  14. 14.
    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509–1512.CrossRefGoogle Scholar
  15. 15.
    Mak, A. N., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335(6069), 716–719.CrossRefGoogle Scholar
  16. 16.
    Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J. K., et al. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335(6069), 720–723.CrossRefGoogle Scholar
  17. 17.
    De Roock, W., Claes, B., Bernasconi, D., De Schutter, J., Biesmans, B., Fountzilas, G., et al. (2010). Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. The Lancet Oncology, 11(8), 753–762.CrossRefGoogle Scholar
  18. 18.
    Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71.CrossRefGoogle Scholar
  19. 19.
    Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39), E2579–E2586.CrossRefGoogle Scholar
  20. 20.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.CrossRefGoogle Scholar
  21. 21.
    Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(Pt 3), 733–740.Google Scholar
  22. 22.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. eLife, 2e00471.Google Scholar
  23. 23.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233–239.CrossRefGoogle Scholar
  24. 24.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.CrossRefGoogle Scholar
  25. 25.
    Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., et al. (2017). Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nature Biotechnology, 35(1), 31–34.CrossRefGoogle Scholar
  26. 26.
    Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827–832.CrossRefGoogle Scholar
  27. 27.
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451.CrossRefGoogle Scholar
  28. 28.
    Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 34(9), 933–941.CrossRefGoogle Scholar
  29. 29.
    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 7, 13274.CrossRefGoogle Scholar
  30. 30.
    Kang, X., He, W., Huang, Y., Yu, Q., Chen, Y., Gao, X., et al. (2016). Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. Journal of Assisted Reproduction and Genetics, 33(5), 581–588.CrossRefGoogle Scholar
  31. 31.
    Freiermuth, J. L., Powell-Castilla, I. J., & Gallicano, G. I. (2018). Toward a CRISPR picture: Use of CRISPR/Cas9 to model diseases in human stem cells in vitro. Journal of Cellular Biochemistry, 119(1), 62–68.CrossRefGoogle Scholar
  32. 32.
    Papapetrou, E. P., Tomishima, M. J., Chambers, S. M., Mica, Y., Reed, E., Menon, J., et al. (2009). Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12759–12764.CrossRefGoogle Scholar
  33. 33.
    Albitar, A., Rohani, B., Will, B., Yan, A., & Gallicano, G. I. (2018). The application of CRISPR/Cas technology to efficiently model complex cancer genomes in stem cells. Journal of Cellular Biochemistry, 119(1), 134–140.CrossRefGoogle Scholar
  34. 34.
    Lombardo, A., Genovese, P., Beausejour, C. M., Colleoni, S., Lee, Y. L., Kim, K. A., et al. (2007). Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 25(11), 1298–1306.CrossRefGoogle Scholar
  35. 35.
    Zou, J., Mali, P., Huang, X., Dowey, S. N., & Cheng, L. (2011). Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood, 118(17), 4599–4608.CrossRefGoogle Scholar
  36. 36.
    Sebastiano, V., Maeder, M. L., Angstman, J. F., Haddad, B., Khayter, C., Yeo, D. T., et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells, 29(11), 1717–1726.CrossRefGoogle Scholar
  37. 37.
    Soldner, F., Laganiere, J., Cheng, A. W., Hockemeyer, D., Gao, Q., Alagappan, R., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2), 318–331.CrossRefGoogle Scholar
  38. 38.
    Ryan, S. D., Dolatabadi, N., Chan, S. F., Zhang, X., Akhtar, M. W., Parker, J., et al. (2013). Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell, 155(6), 1351–1364.CrossRefGoogle Scholar
  39. 39.
    Jiang, J., Jing, Y., Cost, G. J., Chiang, J. C., Kolpa, H. J., Cotton, A. M., et al. (2013). Translating dosage compensation to trisomy 21. Nature, 500(7462), 296–300.CrossRefGoogle Scholar
  40. 40.
    Kiskinis, E., Sandoe, J., Williams, L. A., Boulting, G. L., Moccia, R., Wainger, B. J., et al. (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 14(6), 781–795.CrossRefGoogle Scholar
  41. 41.
    Fong, H., Wang, C., Knoferle, J., Walker, D., Balestra, M. E., Tong, L. M., et al. (2013). Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells. Stem Cell Reports, 1(3), 226–234.CrossRefGoogle Scholar
  42. 42.
    Yusa, K., Rashid, S. T., Strick-Marchand, H., Varela, I., Liu, P. Q., Paschon, D. E., et al. (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478(7369), 391–394.CrossRefGoogle Scholar
  43. 43.
    Li, L., Krymskaya, L., Wang, J., Henley, J., Rao, A., Cao, L. F., et al. (2013). Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(6), 1259–1269.CrossRefGoogle Scholar
  44. 44.
    Wang, J., Exline, C. M., DeClercq, J. J., Llewellyn, G. N., Hayward, S. B., Li, P. W., et al. (2015). Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nature Biotechnology, 33(12), 1256–1263.CrossRefGoogle Scholar
  45. 45.
    Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., et al. (1996). Identification of a major co-receptor for primary isolates of HIV-1. Nature, 381(6584), 661–666.CrossRefGoogle Scholar
  46. 46.
    Li, C., Guan, X., Du, T., Jin, W., Wu, B., Liu, Y., et al. (2015). Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. The Journal of General Virology, 96(8), 2381–2393.CrossRefGoogle Scholar
  47. 47.
    Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., et al. (2014). Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. The New England Journal of Medicine, 370(10), 901–910.CrossRefGoogle Scholar
  48. 48.
    Ding, Q., Lee, Y. K., Schaefer, E. A., Peters, D. T., Veres, A., Kim, K., et al. (2013). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 12(2), 238–251.CrossRefGoogle Scholar
  49. 49.
    Woodruff, G., Young, J. E., Martinez, F. J., Buen, F., Gore, A., Kinaga, J., et al. (2013). The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Reports, 5(4), 974–985.CrossRefGoogle Scholar
  50. 50.
    Choi, S. M., Kim, Y., Shim, J. S., Park, J. T., Wang, R. H., Leach, S. D., et al. (2013). Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology, 57(6), 2458–2468.CrossRefGoogle Scholar
  51. 51.
    Ma, N., Liao, B., Zhang, H., Wang, L., Shan, Y., Xue, Y., et al. (2013). Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. The Journal of Biological Chemistry, 288(48), 34671–34679.CrossRefGoogle Scholar
  52. 52.
    Park, C. Y., Kim, J., Kweon, J., Son, J. S., Lee, J. S., Yoo, J. E., et al. (2014). Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9253–9258.CrossRefGoogle Scholar
  53. 53.
    Wu, Y., Hu, Z., Li, Z., Pang, J., Feng, M., Hu, X., et al. (2016). In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Scientific Reports, 6, 18865.CrossRefGoogle Scholar
  54. 54.
    Osborn, M. J., Starker, C. G., McElroy, A. N., Webber, B. R., Riddle, M. J., Xia, L., et al. (2013). TALEN-based gene correction for epidermolysis bullosa. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(6), 1151–1159.CrossRefGoogle Scholar
  55. 55.
    Maetzel, D., Sarkar, S., Wang, H., Abi-Mosleh, L., Xu, P., Cheng, A. W., et al. (2014). Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports, 2(6), 866–880.CrossRefGoogle Scholar
  56. 56.
    Menon, T., Firth, A. L., Scripture-Adams, D. D., Galic, Z., Qualls, S. J., Gilmore, W. B., et al. (2015). Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell, 16(4), 367–372.CrossRefGoogle Scholar
  57. 57.
    Schwank, G., Koo, B. K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6), 653–658.CrossRefGoogle Scholar
  58. 58.
    Firth, A. L., Menon, T., Parker, G. S., Qualls, S. J., Lewis, B. M., Ke, E., et al. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports, 12(9), 1385–1390.CrossRefGoogle Scholar
  59. 59.
    Xie, F., Ye, L., Chang, J. C., Beyer, A. I., Wang, J., Muench, M. O., et al. (2014). Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, 24(9), 1526–1533.CrossRefGoogle Scholar
  60. 60.
    Chang, C. W., Lai, Y. S., Westin, E., Khodadadi-Jamayran, A., Pawlik, K. M., Lamb, L. S., Jr., et al. (2015). Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Reports, 12(10), 1668–1677.CrossRefGoogle Scholar
  61. 61.
    Dever, D. P., Bak, R. O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C. E., et al. (2016). CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.CrossRefGoogle Scholar
  62. 62.
    Bassuk, A. G., Zheng, A., Li, Y., Tsang, S. H., & Mahajan, V. B. (2016). Precision medicine: Genetic repair of retinitis pigmentosa in patient-derived stem cells. Scientific Reports, 6, 19969.CrossRefGoogle Scholar
  63. 63.
    Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., et al. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature Medicine, 21(3), 256–262.CrossRefGoogle Scholar
  64. 64.
    Drost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015). Sequential cancer mutations in cultured human intestinal stem cells. Nature, 521(7550), 43–47.CrossRefGoogle Scholar
  65. 65.
    Drost, J., van Boxtel, R., Blokzijl, F., Mizutani, T., Sasaki, N., Sasselli, V., et al. (2017). Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science, 358(6360), 234–238.CrossRefGoogle Scholar
  66. 66.
    Han, S., Guo, J., Liu, Y., Zhang, Z., He, Q., Li, P., et al. (2015). Knock out CD44 in reprogrammed liver cancer cell C3A increases CSCs stemness and promotes differentiation. Oncotarget, 6(42), 44452–44465.CrossRefGoogle Scholar
  67. 67.
    Liao, J., Karnik, R., Gu, H., Ziller, M. J., Clement, K., Tsankov, A. M., et al. (2015). Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics, 47(5), 469–478.CrossRefGoogle Scholar
  68. 68.
    Guo, D., Liu, H., Gao, G., Ruzi, A., Wang, K., Wu, H., et al. (2016). Generation of an Abcc8 heterozygous mutation human embryonic stem cell line using CRISPR/Cas9. Stem Cell Research, 17(3), 670–672.CrossRefGoogle Scholar
  69. 69.
    Mandal, P. K., Ferreira, L. M., Collins, R., Meissner, T. B., Boutwell, C. L., Friesen, M., et al. (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 15(5), 643–652.CrossRefGoogle Scholar
  70. 70.
    Ye, L., Wang, J., Beyer, A. I., Teque, F., Cradick, T. J., Qi, Z., et al. (2014). Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9591–9596.CrossRefGoogle Scholar
  71. 71.
    Pipeline. Available from: http://www.intelliatx.com/pipeline. Accessed Feb 04, 2018.
  72. 72.
    Diverse Pipeline Across Range of Diseases. Available from: http://www.editasmedicine.com/pipeline. Accessed Feb 04, 2018.
  73. 73.
    Zou, J., Sweeney, C. L., Chou, B. K., Choi, U., Pan, J., Wang, H., et al. (2011). Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: Functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood, 117(21), 5561–5572.CrossRefGoogle Scholar
  74. 74.
    Mock, U., Machowicz, R., Hauber, I., Horn, S., Abramowski, P., Berdien, B., et al. (2015). mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Research, 43(11), 5560–5571.CrossRefGoogle Scholar
  75. 75.
    Li, H. L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T., et al. (2015). Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 4(1), 143–154.CrossRefGoogle Scholar
  76. 76.
    Xu, P., Tong, Y., Liu, X. Z., Wang, T. T., Cheng, L., Wang, B. Y., et al. (2015). Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in beta-thalassemia-derived iPSCs. Scientific Reports, 5, 12065.CrossRefGoogle Scholar
  77. 77.
    Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166), 84–87.CrossRefGoogle Scholar
  78. 78.
    Giani, F. C., Fiorini, C., Wakabayashi, A., Ludwig, L. S., Salem, R. M., Jobaliya, C. D., et al. (2016). Targeted application of human genetic variation can improve red blood cell production from stem cells. Cell Stem Cell, 18(1), 73–78.CrossRefGoogle Scholar
  79. 79.
    Xu, G., Guo, D., Wu, F., Abbas, N., Lai, K., Yuan, F., et al. (2017). Generation of a GDE heterozygous mutation human embryonic stem cell line WAe001-A-14 by CRISPR/Cas9 editing. Stem Cell Research, 27, 38–41.CrossRefGoogle Scholar
  80. 80.
    Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.CrossRefGoogle Scholar
  81. 81.
    Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., et al. (2015). Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature Methods, 12, 237–243.CrossRefGoogle Scholar
  82. 82.
    Kuscu, C., Arslan, S., Singh, R., Thorpe, J., & Adli, M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature Biotechnology, 32, 677–683.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Biotechnology, College of Medical and Life ScienceSilla UniversityBusanSouth Korea
  2. 2.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
  3. 3.College of MedicineHanyang UniversitySeoulSouth Korea

Personalised recommendations