Advertisement

Validated Nuclear-Based Transgene Expression Regulated by the Fea1 Iron-Responsive Promoter in the Green Alga Chlamydomonas reinhardtii

  • Paula Barjona do Nascimento CoutinhoEmail author
  • Christine Friedl
  • Marcus Heilmann
  • Rainer Buchholz
  • Stephanie Christine Stute
Original paper
  • 64 Downloads

Abstract

Microalgae are in the focus for the production of recombinant proteins in research and potential commercial application. Inducible promoters represent important tools that potentially allow the expression of recombinant proteins at higher rates. In general, they are used to separate the culture growth phase from the production phase by initiating product formation after high cell densities have been achieved. This potentially offers a higher space–time yield, consequently improving the economics of a process. In the case of the green micro alga Chlamydomonas reinhardtii, a controlled switch between activation and deactivation of gene expression is possible by changes in cultivation parameters. In this work, parameters of induction and deactivation of the iron-responsive Fea1 promoter were analyzed over time in C. reinhardtii. The results presented for the strain CC4351 validate our previous findings presented for strain CC 400. The Fea1 promoter was successfully deactivated upon transferring the cells to medium containing 10 and 20 µM Fe3+. Within 120 h, cells showed only 1.7–6% of the initial fluorescence. Activation of the Fea1 promoter occurred promptly and prominently when cells were transferred to iron-deplete medium. In general, both strains showed a pronounced difference between the active and the inactive states of the Fea1 promoter.

Keywords

Algal biotechnology Inducible promoters Recombinant proteins Flow cytometry 

Notes

Acknowledgements

We thank the program CIÊNCIA SEM FRONTEIRAS/CAPES Foundation, Ministry of Education, Brazil Brasília—DF, for the scholarship grant for Paula Barjona do Nascimento Coutinho. We thank Dr. Sebastian M. Strauch (Institute of Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) and Dr. Andreas Perlick (Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) for critically revising the manuscript.

Funding

This study was funded by CIÊNCIA SEM FRONTEIRAS/CAPES Foundation, Ministry of Education, Brasília, Brazil—DF (Scholarship Grant No. 8983-13-5 for Paula Barjona do Nascimento Coutinho).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12033_2018_148_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)
12033_2018_148_MOESM2_ESM.jpg (99 kb)
Supplementary material 2 (JPG 99 KB)

References

  1. 1.
    Barrera, D. J., & Mayfield, S. P. (2013). High-value recombinant protein production in microalgae. In A. Richmond & E. Q. Hu (Eds.), Handbook of microalgal culture (pp. 532–544). Oxford: John Wiley & Sons.CrossRefGoogle Scholar
  2. 2.
    Mathieu-Rivet, E., Kiefer-Meyer, M.-C., Vanier, G., et al. (2014). Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Frontiers in Plant Science, 5, 359.  https://doi.org/10.3389/fpls.2014.00359.CrossRefGoogle Scholar
  3. 3.
    Rosales-Mendoza, S. (2016). Algae-based biopharmaceuticals. Cham: Springer.CrossRefGoogle Scholar
  4. 4.
    Scranton, M. A., Ostrand, J. T., Fields, F. J., et al. (2015). Chlamydomonas as a model for biofuels and bio-products production. The Plant Journal, 82(3), 523–531.  https://doi.org/10.1111/tpj.12780.CrossRefGoogle Scholar
  5. 5.
    Mussgnug, J. H. (2015). Genetic tools and techniques for Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology, 99(13), 5407–5418.  https://doi.org/10.1007/s00253-015-6698-7.CrossRefGoogle Scholar
  6. 6.
    Jinkerson, R. E., & Jonikas, M. C. (2015). Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. The Plant Journal, 82(3), 393–412.  https://doi.org/10.1111/tpj.12801.CrossRefGoogle Scholar
  7. 7.
    Molino, J. V. D., de Carvalho, J. C. M., & Mayfield, S. P. (2018). Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE, 13(2), e0192433.  https://doi.org/10.1371/journal.pone.0192433.CrossRefGoogle Scholar
  8. 8.
    Richmond, A., & Hu, Q. (2013). Handbook of microalgal culture. Oxford: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
  9. 9.
    Yan, N., Fan, C., Chen, Y., et al. (2016). The potential for microalgae as bioreactors to produce pharmaceuticals. Indian Journal of Geo-Marine Sciences, 17(6), 962.  https://doi.org/10.3390/ijms17060962.Google Scholar
  10. 10.
    Fuhrmann, M., Oertel, W., & Hegemann, P. (1999). A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. The Plant Journal, 19(3), 353–361.CrossRefGoogle Scholar
  11. 11.
    Schroda, M., Blöcker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal, 21(2), 121–131.CrossRefGoogle Scholar
  12. 12.
    Ruecker, O., Zillner, K., Groebner-Ferreira, R., et al. (2008). Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 280(2), 153–162.  https://doi.org/10.1007/s00438-008-0352-3.CrossRefGoogle Scholar
  13. 13.
    Rasala, B. A., Lee, P. A., Shen, Z., et al. (2012). Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS ONE, 7(8), e43349.  https://doi.org/10.1371/journal.pone.0043349.CrossRefGoogle Scholar
  14. 14.
    Rasala, B. A., Barrera, D. J., Ng, J., et al. (2013). Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J, 74(4), 545–556.  https://doi.org/10.1111/tpj.12165.CrossRefGoogle Scholar
  15. 15.
    Ferrante, P., Catalanotti, C., Bonente, G., et al. (2008). An optimized, chemically regulated gene expression system for chlamydomonas. PLoS ONE, 3(9), e3200.  https://doi.org/10.1371/journal.pone.0003200.CrossRefGoogle Scholar
  16. 16.
    Surzycki, R., Cournac, L., Peltier, G., et al. (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proceedings of the National Academy of Sciences USA, 104(44): 17548–17553.  https://doi.org/10.1073/pnas.0704205104.CrossRefGoogle Scholar
  17. 17.
    Barjona, doN., Coutinho, P., Friedl, C., Buchholz, R., et al. (2017). Chemical regulation of Fea1 driven transgene expression in Chlamydomonas reinhardtii. Algal Research, 26, 323–329.  https://doi.org/10.1016/j.algal.2017.08.006.CrossRefGoogle Scholar
  18. 18.
    Gorman, D. S., & Levine, R. P. (1965) Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences USA, 54(6), 1665–1669.CrossRefGoogle Scholar
  19. 19.
    Kropat, J., Hong-Hermesdorf, A., Casero, D., et al. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal, 66(5), 770–780.  https://doi.org/10.1111/j.1365-313X.2011.04537.x.CrossRefGoogle Scholar
  20. 20.
    Allen, M. D., del Campo, J. A., Kropat, J., et al. (2007). FEA1, FEA2, and FRE1, Encoding Two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryotic Cell, 6(10), 1841–1852.  https://doi.org/10.1128/EC.00205-07.CrossRefGoogle Scholar
  21. 21.
    Kindle, K. L. (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA, 87(3), 1228–1232.  https://doi.org/10.1073/pnas.87.3.1228.CrossRefGoogle Scholar
  22. 22.
    Neuhoff, V., Philipp, K., Zimmer, H. G., et al. (1979). A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Hoppe-Seyler’s Zeitschrift fur physiologische Chemie, 360(11), 1657–1670.CrossRefGoogle Scholar
  23. 23.
    Kumar, A., Falcao, V. R., & Sayre, R. T. (2013). Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Research, 2(4), 321–332.  https://doi.org/10.1016/j.algal.2013.09.002.CrossRefGoogle Scholar
  24. 24.
    Merchant, S. S., Allen, M. D., Kropat, J., et al. (2006). Between a rock and a hard place: Trace element nutrition in Chlamydomonas. Biochimica et Biophysica Acta, 1763(7), 578–594.  https://doi.org/10.1016/j.bbamcr.2006.04.007.CrossRefGoogle Scholar
  25. 25.
    Urzica, E. I., Casero, D., Yamasaki, H., et al. (2012). Systems and trans -system level analysis identifies conserved iron deficiency responses in the plant lineage. The Plant Cell, 24(10), 3921–3948.  https://doi.org/10.1105/tpc.112.102491.CrossRefGoogle Scholar
  26. 26.
    Glaesener, A. G., Merchant, S. S., & Blaby-Haas, C. E. (2013) Iron economy in Chlamydomonas reinhardtii. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2013.00337.Google Scholar
  27. 27.
    Hanawa, Y., Watanabe, M., Karatsu, Y., et al., Protein, P. (2006). Induction of a High-CO2-Inducible. H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii. Plant and Cell Physiology, 48(2), 299–309.  https://doi.org/10.1093/pcp/pcl066.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paula Barjona do Nascimento Coutinho
    • 1
    Email author
  • Christine Friedl
    • 1
  • Marcus Heilmann
    • 1
  • Rainer Buchholz
    • 1
  • Stephanie Christine Stute
    • 1
  1. 1.Institute of Bioprocess EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations