Molecular Biotechnology

, Volume 60, Issue 2, pp 169–183 | Cite as

Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production

  • Hélio Nitta Matsuura
  • Sonia Malik
  • Fernanda de Costa
  • Morteza Yousefzadi
  • Mohammad Hossein Mirjalili
  • Randolph Arroo
  • Avninder S. Bhambra
  • Miroslav Strnad
  • Mercedes Bonfill
  • Arthur Germano Fett-NetoEmail author


Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.


Genetically engineered cultures In vitro culture Natural products Secondary metabolites Synthetic biology 



Preparation of this manuscript was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brazil (AGFN) (Grant No. 306079/2013-5), and Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão - FAPEMA, Brazil (10/2015 BEPP).

Author’s Contribution

AGFN and SM conceived, outlined the review, and did most of the writing. HNM and FDC assisted in compiling literature data, drafting late versions of the manuscript and making figures. MY, MHM, RA, ASB, MS, and MB collected and helped analyzing the literature, and participated in drafting of the text.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12033_2017_56_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)


  1. 1.
    Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, 629–661.CrossRefGoogle Scholar
  2. 2.
    Urabe, D., Asaba, T., & Inoue, M. (2015). Convergent strategies in total syntheses of complex terpenoids. Chemical Reviews, 115, 9207–9231.CrossRefGoogle Scholar
  3. 3.
    Kutchan, T., Gershenzon, J., Moller, B. L., & Gang, D. (2015). Natural products. In B. B. Buchanan, W. Gruissem, & R. L. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1132–1206). Oxford: Wiley.Google Scholar
  4. 4.
    Hartmann, T. (2007). From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry, 68, 2831–2846.CrossRefGoogle Scholar
  5. 5.
    Ober, D. (2010). Gene duplications and the time thereafter: Examples from plant secondary metabolism. Plant Biology, 12, 570–577.Google Scholar
  6. 6.
    De Luca, V., Salim, V., Thamm, A., Masada, S. A., & Yu, F. (2014). Making iridoids/secoiridoids and monoterpenoid indole alkaloids: Progress on pathway elucidation. Current Opinion in Plant Biology, 19, 35–42.CrossRefGoogle Scholar
  7. 7.
    Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584, 2965–2973.CrossRefGoogle Scholar
  8. 8.
    Courdavault, V., Papon, N., Clastre, M., Giglioli-Guivarc’h, N., St-Pierre, B., & Burlat, V. (2014). A look inside an alkaloid multisite plant: The Catharanthus logistics. Current Opinion in Plant Biology, 19, 43–50.CrossRefGoogle Scholar
  9. 9.
    Nour-Eldin, H. H., & Halkier, B. A. (2013). The emerging field of transport engineering of plant specialized metabolites. Current Opinion in Biotechnology, 24, 263–270.CrossRefGoogle Scholar
  10. 10.
    Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6, 1720–1731.CrossRefGoogle Scholar
  11. 11.
    Matsuura, H. N., Fragoso, V., Paranhos, J. T., Rau, M. R., & Fett-Neto, A. G. (2016). The bioactive monoterpene indole alkaloid N, β-D-glucopyranosyl vincosamide is regulated by irradiance quality and development in Psychotria leiocarpa. Industrial Crops and Products, 86, 210–218.CrossRefGoogle Scholar
  12. 12.
    Kooke, R., & Keurentjes, J. J. (2012). Multi-dimensional regulation of metabolic networks shaping plant development and performance. Journal of Experimental Botany, 63, 3353–3365.CrossRefGoogle Scholar
  13. 13.
    Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 7, 187.CrossRefGoogle Scholar
  14. 14.
    Matsuura, H. N., & Fett-Neto, A. G. (2013). The major indole alkaloid N,β-D-glucopyranosyl vincosamide from leaves of Psychotria leiocarpa Cham. & Schltdl. is not an antifeedant but shows broad antioxidant activity. Natural Product Research, 27, 402–411.CrossRefGoogle Scholar
  15. 15.
    Matsuura, H. N., Rau, M. R., & Fett-Neto, A. G. (2014). Oxidative stress and production of bioactive monoterpene indole alkaloids: Biotechnological implications. Biotechnology Letters, 36, 191–200.CrossRefGoogle Scholar
  16. 16.
    Pedras, M. S., & Yaya, E. E. (2015). Plant chemical defenses: Are all constitutive antimicrobial metabolites phytoanticipins? Natural Products Communications, 10, 209–218.Google Scholar
  17. 17.
    Laursen, T., Borch, J., Knudsen, C., Bavishi, K., Torta, F., Martens, H. J., et al. (2016). Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science, 354, 890–893.CrossRefGoogle Scholar
  18. 18.
    Jørgensen, K., Rasmussen, A. V., Morant, M., Nielsen, A. H., Bjarnholt, N., Zagrobelny, M., et al. (2005). Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Current Opinion in Plant Biology, 8, 280–291.CrossRefGoogle Scholar
  19. 19.
    Boycheva, S., Daviet, L., Wolfender, J. L., & Fitzpatrick, T. B. (2014). The rise of operon-like gene clusters in plants. Trends in Plant Science, 19, 447–459.CrossRefGoogle Scholar
  20. 20.
    Osbourn, A. (2010). Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends in Genetics, 26, 449–457.CrossRefGoogle Scholar
  21. 21.
    Nützmann, H.-W., & Osbourn, A. (2014). Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 26, 91–99.CrossRefGoogle Scholar
  22. 22.
    Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K., et al. (2016). Plant cell culture strategies for the production of natural products. BMB Rep., 49, 149–158.CrossRefGoogle Scholar
  23. 23.
    Bonfill, M., Malik, S., Mirjalili, M. H., Goleniowski, M., Cusido, R., & Palazón, J. (2013). Production and genetic engineering of terpenoids production in plant cell and organ cultures. In K. G. Ramawat & J.-M. Mérillon (Eds.), Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes (pp. 2761–2796). Berlin: Springer.CrossRefGoogle Scholar
  24. 24.
    Malik, S., Bhushan, S., Sharma, M., & Ahuja, P. S. (2016). Biotechnological approaches to the production of shikonins: A critical review with recent updates. Critical Reviews in Biotechnology, 36, 327–340.CrossRefGoogle Scholar
  25. 25.
    Maschke, R. W., Geipel, K., & Bley, T. (2015). Modeling of plant in vitro cultures: Overview and estimation of biotechnological processes. Biotechnology and Bioengineering, 112, 1–12.CrossRefGoogle Scholar
  26. 26.
    Kumar, A. (2015). Improving secondary metabolite production in tissue cultures. In B. Bahadur, M. Venkat Rajam, L. Sahijram, & K. V. Krishnamurthy (Eds.), Plant biology and biotechnology: Volume II: Plant genomics and biotechnology (pp. 397–406). New Delhi: Springer.Google Scholar
  27. 27.
    Gandhi, S. G., Mahajan, V., & Bedi, Y. S. (2015). Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta, 241, 303–317.CrossRefGoogle Scholar
  28. 28.
    Fischer, R., Vasilev, N., Twyman, R. M., & Schillberg, S. (2015). High-value products from plants: The challenges of process optimization. Current Opinion in Biotechnology, 32, 156–162.CrossRefGoogle Scholar
  29. 29.
    Yousefzadi, M., Sharifi, M., Chashmi, N. A., Behmanesh, M., & Ghasempour, A. (2010). Optimization of podophyllotoxin extraction method from Linum album cell cultures. Pharmaceutical Biology, 48, 1421–1425.CrossRefGoogle Scholar
  30. 30.
    Malik, S., Bhushan, S., Verma, S. C., Sinha, A. K., Sharma, M., & Ahuja, P. S. (2008). Effect of pH on cell growth and shikonin derivative formation in Arnebia euchroma suspension cultures. Medicinal and Aromatic Plant Science and Biotechnology, 2, 43–49.Google Scholar
  31. 31.
    Malik, S., Bhushan, S., Sharma, M., & Singh Ahuja, P. (2011). Physico-chemical factors influencing the shikonin derivatives production in cell suspension cultures of Arnebia euchroma (Royle) Johnston, a medicinally important plant species. Cell Biology International, 35, 153–158.CrossRefGoogle Scholar
  32. 32.
    Malik, S., Andrade, S. A. L., Sawaya, A. C. H. F., Bottcher, A., & Mazzafera, P. (2013). Root-zone temperature alters alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum. Industrial Crops and Products, 49, 318–325.CrossRefGoogle Scholar
  33. 33.
    Yousefzadi, M., Sharifi, M., Behmanesh, M., Moyano, E., Bonfill, M., Cusido, R. M., et al. (2010). Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Engineering in Life Sciences, 10, 281–292.CrossRefGoogle Scholar
  34. 34.
    Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: A historical perspective. Plant Science, 161, 839–851.CrossRefGoogle Scholar
  35. 35.
    Zhong, J.-J. (2001). Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In J. J. Zhong, S. Y. Byun, G. H. Cho, J. W. Choi, J. R. Haigh, H. Honda, E. James, J. W. Kijne, D. I. Kim, T. Kobayashi, J. M. Lee, M. Kino-oka, J. C. Linden, C. Liu, J. Memelink, N. Mirjalili, H. Nagatome, M. Taya, M. Phisaphalong, R. van der Heijden, & R. Verpoorte (Eds.), Plant cells (pp. 1–26). Berlin: Springer.CrossRefGoogle Scholar
  36. 36.
    Barbuti, A. M., & Chen, Z.-S. (2015). Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers, 7, 2360–2371.CrossRefGoogle Scholar
  37. 37.
    Fett-Neto, A. G., DiCosmo, F., Reynolds, W. F., & Sakata, K. (1992). Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Nature Biotechnology, 10, 1572–1575.CrossRefGoogle Scholar
  38. 38.
    Kintzios, S. (2008). Secondary metabolite production from plant cell cultures: The success stories of rosmarinic acid and taxol. In K. G. Ramawat & J. M. Merillon (Eds.), Bioactive molecules and medicinal plants (pp. 85–100). Berlin: Springer.CrossRefGoogle Scholar
  39. 39.
    Mulabagal, V., & Tsay, H. S. (2004). Plant cell cultures: An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29–48.Google Scholar
  40. 40.
    Bentebibel, S., Moyano, E., Palazon, J., Cusido, R. M., Bonfill, M., Eibl, R., et al. (2005). Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnology and Bioengineering, 89, 647–655.CrossRefGoogle Scholar
  41. 41.
    Bonfill, M., Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Eibl, R., et al. (2007). Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biologia Plantarum, 51, 647–652.CrossRefGoogle Scholar
  42. 42.
    Exposito, O., Syklowska-Baranek, K., Moyano, E., Onrubia, M., Bonfill, M., Palazon, J., et al. (2010). Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnology Progress, 26, 1145–1153.Google Scholar
  43. 43.
    Pasquali, G., Porto, D. D., & Fett-Neto, A. G. (2006). Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: Recent progress related to old dilemma. Journal of Bioscience and Bioengineering, 101, 287–296.CrossRefGoogle Scholar
  44. 44.
    Gupta, O. P., Karkute, S. G., Banerjee, S., Meena, N. L., & Dahuja, A. (2017). Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Frontiers in Plant Science, 8, 374.Google Scholar
  45. 45.
    Patil, R. A., Kolewe, M. E., & Roberts, S. C. (2013). Cellular aggregation is a key parameter associated with long term variability in paclitaxel accumulation in Taxus suspension cultures. Plant Cell, Tissue and Organ Culture, 112, 303–310.CrossRefGoogle Scholar
  46. 46.
    Yue, W., Ming, Q. L., Lin, B., Rahman, K., Zheng, C. J., Han, T., et al. (2016). Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36, 215–232.CrossRefGoogle Scholar
  47. 47.
    Murthy, H. N., Lee, E.-J., & Paek, K.-Y. (2014). Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture, 118, 1–16.CrossRefGoogle Scholar
  48. 48.
    Fett-Neto, A. G., Melanson, S. J., Nicholson, S. A., Pennington, J. J., & Dicosmo, F. (1994). Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidata. Biotechnology and Bioengineering, 44, 967–971.CrossRefGoogle Scholar
  49. 49.
    Edahiro, J.-I., Nakamura, M., Seki, M., & Furusaki, S. (2005). Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of l-phenylalanine into the medium. Journal of Bioscience and Bioengineering, 99, 43–47.CrossRefGoogle Scholar
  50. 50.
    Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V. J., et al. (2008). Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiology, 148, 730–750.CrossRefGoogle Scholar
  51. 51.
    Ayan, A. K., Çirak, C., & Yanar, O. (2006). Variations in total phenolics during ontogenetic, morphogenetic, and diurnal cycles in Hypericum species from Turkey. Journal of Plant Biology, 49, 432–439.CrossRefGoogle Scholar
  52. 52.
    Chan, E. K. F., Rowe, H. C., Corwin, J. A., Joseph, B., & Kliebenstein, D. J. (2011). Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biology, 9, e1001125.CrossRefGoogle Scholar
  53. 53.
    Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusido, R. M., et al. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21, 182.CrossRefGoogle Scholar
  54. 54.
    Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E., & Palazon, J. (2010). Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnology Letters, 32, 1739–1743.CrossRefGoogle Scholar
  55. 55.
    Namdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1, 69–79.Google Scholar
  56. 56.
    Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E., & Palazon, J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiology and Biochemistry, 56, 41–46.CrossRefGoogle Scholar
  57. 57.
    Wasternack, C., & Strnad, M. (2017). Jasmonates are signals in the biosynthesis of secondary metabolites: Pathways, transcription factors and applied aspects: A brief review. New Biotechnology. Scholar
  58. 58.
    Kempinski, C., Jiang, Z., Bell, S., & Chappell, J. (2015). Metabolic engineering of higher plants and algae for isoprenoid production. Advances in Biochemical Engineering/Biotechnology, 148, 161–199.CrossRefGoogle Scholar
  59. 59.
    Russowski, D., Maurmann, N., Rech, S. B., & Fett-Neto, A. G. (2013). Improved production of bioactive valepotriates in whole-plant liquid cultures of Valeriana glechomifolia. Industrial Crops and Products, 46, 253–257.CrossRefGoogle Scholar
  60. 60.
    Ho, T.-T., Lee, K.-J., Lee, J.-D., Bhushan, S., Paek, K.-Y., & Park, S.-Y. (2017). Adventitious root culture of Polygonum multiflorum for phenolic compounds and its pilot-scale production in 500 L-tank. Plant Cell, Tissue and Organ Culture (PCTOC), 130, 167–181.CrossRefGoogle Scholar
  61. 61.
    Tian, L. (2015). Using hairy roots for production of valuable plant secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 149, 275–324.CrossRefGoogle Scholar
  62. 62.
    El Meskaaoui, A. (2012). Plant cell tissue and organ culture biotechnology and its application in medicinal and aromatic plants. Medicinal and Aromatic Plants, 2, e147.Google Scholar
  63. 63.
    Malik, S., Sharma, N., Sharma, U. K., Singh, N. P., Bhushan, S., Sharma, M., et al. (2010). Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants. Journal of Plant Physiology, 167, 749–756.CrossRefGoogle Scholar
  64. 64.
    O’Connor, S. E. (2015). Engineering of secondary metabolism. Annual Review of Genetics, 49, 71–94.CrossRefGoogle Scholar
  65. 65.
    Zárate, R., el Jaber-Vazdekis, N., & Verpoorte, R. (2013). Metabolic engineering of plant cellular metabolism: methodologies, advances, and future directions. In S. Chandra, H. Lata, & A. Varma (Eds.), Biotechnology for medicinal plants: Micropropagation and improvement (pp. 359–393). Berlin: Springer.CrossRefGoogle Scholar
  66. 66.
    Nascimento, N. C., & Fett-Neto, A. G. (2010). Plant secondary metabolism and challenges in modifying its operation: An overview. Methods in Molecular Biology, 643, 1–13.CrossRefGoogle Scholar
  67. 67.
    Moldrup, M. E., Geu-Flores, F., de Vos, M., Olsen, C. E., Sun, J., Jander, G., et al. (2012). Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). Plant Biotechnology Journal, 10, 435–442.CrossRefGoogle Scholar
  68. 68.
    Nour-Eldin, H. H., Geu-Flores, F., & Halkier, B. A. (2010). USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories. In A. G. Fett-Neto (Ed.), Plant Secondary metabolism engineering: Methods and applications (pp. 185–200). Totowa: Humana Press.CrossRefGoogle Scholar
  69. 69.
    De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17, 349–359.CrossRefGoogle Scholar
  70. 70.
    Woodson, J. D., & Chory, J. (2008). Coordination of gene expression between organellar and nuclear genomes. Nature Reviews Genetics, 9, 383–395.CrossRefGoogle Scholar
  71. 71.
    Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., et al. (2013). Plant flavonoids: Biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14, 14950–14973.CrossRefGoogle Scholar
  72. 72.
    Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769.CrossRefGoogle Scholar
  73. 73.
    Heinig, U., Gutensohn, M., Dudareva, N., & Aharoni, A. (2013). The challenges of cellular compartmentalization in plant metabolic engineering. Current Opinion in Biotechnology, 24, 239–246.CrossRefGoogle Scholar
  74. 74.
    Lu, Y., Rijzaani, H., Karcher, D., Ruf, S., & Bock, R. (2013). Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences of the United States of America, 110, E623–E632.CrossRefGoogle Scholar
  75. 75.
    Schiml, S., & Puchta, H. (2016). Revolutionizing plant biology: Multiple ways of genome engineering by CRISPR/Cas. Plant Methods, 12, 8.CrossRefGoogle Scholar
  76. 76.
    Chang, W. C., Lee, T. Y., Huang, H. D., Huang, H. Y., & Pan, R. L. (2008). PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 9, 561.CrossRefGoogle Scholar
  77. 77.
    Negre-Zakharov, F., Long, M. C., & Dudareva, N. (2009). Floral scents and fruit aromas inspired by nature. In A. E. Osbourn & V. Lanzotti (Eds.), Plant-derived natural products: Synthesis, function, and application (pp. 405–431). New York: Springer.CrossRefGoogle Scholar
  78. 78.
    Itkin, M., & Aharoni, A. (2009). Bioengineering. In A. E. Osbourn & V. Lanzotti (Eds.), Plant-derived natural products: Synthesis, function and application (pp. 435–473). New York: Springer.CrossRefGoogle Scholar
  79. 79.
    Butelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26, 1301–1308.CrossRefGoogle Scholar
  80. 80.
    Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A., & Harmer, S. L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 9, R130.CrossRefGoogle Scholar
  81. 81.
    De Costa, F., Yendo, A. C., Fleck, J. D., Gosmann, G., & Fett-Neto, A. G. (2013). Accumulation of a bioactive triterpene saponin fraction of Quillaja brasiliensis leaves is associated with abiotic and biotic stresses. Plant Physiology and Biochemistry, 66, 56–62.CrossRefGoogle Scholar
  82. 82.
    Nascimento, N. C., Menguer, P. K., Henriques, A. T., & Fett-Neto, A. G. (2013). Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of Psychotria brachyceras. Plant Physiology and Biochemistry, 73, 33–40.CrossRefGoogle Scholar
  83. 83.
    Peebles, C. A., Sander, G. W., Hughes, E. H., Peacock, R., Shanks, J. V., & San, K. Y. (2011). The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metabolic Engineering, 13, 234–240.CrossRefGoogle Scholar
  84. 84.
    Pan, Q., Wang, Q., Yuan, F., Xing, S., Zhao, J., Choi, Y. H., et al. (2012). Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One, 7, e43038.CrossRefGoogle Scholar
  85. 85.
    Yu, F., & De Luca, V. (2013). ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proceedings of the National Academy of Sciences of the United States of America, 110, 15830–15835.CrossRefGoogle Scholar
  86. 86.
    Lv, H., Li, J., Wu, Y., Garyali, S., & Wang, Y. (2016). Transporter and its engineering for secondary metabolites. Applied Microbiology and Biotechnology, 100, 6119–6130.CrossRefGoogle Scholar
  87. 87.
    Tarkowski, P., & Vereecke, D. (2014). Threats and opportunities of plant pathogenic bacteria. Biotechnology Advances, 32, 215–229.CrossRefGoogle Scholar
  88. 88.
    Akhgari, A., Yrjonen, T., Laakso, I., Vuorela, H., Oksman-Caldentey, K. M., & Rischer, H. (2015). Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production. Plant Cell Reports, 34, 1939–1952.CrossRefGoogle Scholar
  89. 89.
    Georgiev, M. I., Agostini, E., Ludwig-Muller, J., & Xu, J. (2012). Genetically transformed roots: From plant disease to biotechnological resource. Trends in Biotechnology, 30, 528–537.CrossRefGoogle Scholar
  90. 90.
    Mehrotra, S., Srivastava, V., Ur Rahman, L., & Kukreja, A. K. (2015). Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma, 252, 1189–1201.CrossRefGoogle Scholar
  91. 91.
    Sinharoy, S., Saha, S., Chaudhury, S. R., & Dasgupta, M. (2009). Transformed hairy roots of Arachis hypogea: A tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe. Molecular Plant-Microbe Interactions, 22, 132–142.CrossRefGoogle Scholar
  92. 92.
    Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Herve, C., Toth, K., et al. (2010). A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 107, 2343–2348.CrossRefGoogle Scholar
  93. 93.
    Bulgakov, V. P. (2008). Functions of rol genes in plant secondary metabolism. Biotechnology Advances, 26, 318–324.CrossRefGoogle Scholar
  94. 94.
    Srivastava, S., & Srivastava, A. K. (2007). Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology, 27, 29–43.CrossRefGoogle Scholar
  95. 95.
    Veena, V., & Taylor, C. G. (2007). Agrobacterium rhizogenes: Recent developments and promising applications. In Vitro Cellular and Developmental Biology-Plant, 43, 383–403.CrossRefGoogle Scholar
  96. 96.
    Crane, C., Wright, E., Dixon, R. A., & Wang, Z. Y. (2006). Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta, 223, 1344–1354.CrossRefGoogle Scholar
  97. 97.
    Chandra, S., & Chandra, R. (2011). Engineering secondary metabolite production in hairy roots. Phytochemistry Reviews, 10, 371.CrossRefGoogle Scholar
  98. 98.
    Ludwig-Müller, J., Jahn, L., Lippert, A., Püschel, J., & Walter, A. (2014). Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: Strategies and applications. Biotechnology Advances, 32, 1168–1179.CrossRefGoogle Scholar
  99. 99.
    Thakore, D., Srivastava, A. K., & Sinha, A. K. (2015). Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochemical Engineering Journal, 97, 73–80.CrossRefGoogle Scholar
  100. 100.
    Liang, Y., Wu, J., Li, Y., Li, J., Ouyang, Y., He, Z., et al. (2015). Enhancement of ginsenoside biosynthesis and secretion by Tween 80 in Panax ginseng hairy roots. Biotechnology and Applied Biochemistry, 62, 193–199.CrossRefGoogle Scholar
  101. 101.
    Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K.-M., et al. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proceedings of the National Academy of Sciences of the United States of America, 101, 6786–6791.CrossRefGoogle Scholar
  102. 102.
    Mirjalili, H. M., Fakhr-Tabatabaei, S. M., Bonfill, M., Alizadeh, H., Cusido, R. M., Ghassempour, A., et al. (2009). Morphology and withanolide production of Withania coagulans hairy root cultures. Engineering in Life Sciences, 9, 197–204.CrossRefGoogle Scholar
  103. 103.
    Patra, N., & Srivastava, A. K. (2016). Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. Plant Cell Reports, 35, 143–153.CrossRefGoogle Scholar
  104. 104.
    Kim, Y. J., Zhang, D., & Yang, D. C. (2015). Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances, 33, 717–735.CrossRefGoogle Scholar
  105. 105.
    Bulgakov, V. P., Shkryl, Y. N., Veremeichik, G. N., Gorpenchenko, T. Y., & Vereshchagina, Y. V. (2013). Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism. Advances in Biochemical Engineering/Biotechnology, 134, 1–22.CrossRefGoogle Scholar
  106. 106.
    Panda, B. M., Mehta, U. J., & Hazra, S. (2017). Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L. 3 Biotech, 7, 21.CrossRefGoogle Scholar
  107. 107.
    Thwe, A., Valan Arasu, M., Li, X., Park, C. H., Kim, S. J., Al-Dhabi, N. A., et al. (2016). Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn). Frontiers in Microbiology, 7, 318.CrossRefGoogle Scholar
  108. 108.
    Cardillo, A. B., Otálvaro, A. Á. M., Busto, V. D., Talou, J. R., Velásquez, L. M. E., & Giulietti, A. M. (2010). Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochemistry, 45, 1577–1581.CrossRefGoogle Scholar
  109. 109.
    Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Hairy root research: recent scenario and exciting prospects. Current Opinion in Plant Biology, 9, 341–346.CrossRefGoogle Scholar
  110. 110.
    Thimmaraju, R., Venkatachalam, L., & Bhagyalakshmi, N. (2008). Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Reports, 27, 1039–1052.CrossRefGoogle Scholar
  111. 111.
    Ono, N. N., & Tian, L. (2011). The multiplicity of hairy root cultures: Prolific possibilities. Plant Science, 180, 439–446.CrossRefGoogle Scholar
  112. 112.
    Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., et al. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532.CrossRefGoogle Scholar
  113. 113.
    Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M., & Smolke, C. D. (2015). Complete biosynthesis of opioids in yeast. Science, 349, 1095–1100.CrossRefGoogle Scholar
  114. 114.
    Moses, T., Pollier, J., Thevelein, J. M., & Goossens, A. (2013). Bioengineering of plant (tri)terpenoids: From metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytologist, 200, 27–43.CrossRefGoogle Scholar
  115. 115.
    Dahm, P., & Jennewein, S. (2010). Introduction of the early pathway to taxol biosynthesis in yeast by means of biosynthetic gene cluster construction using SOE-PCR and homologous recombination. Methods in Molecular Biology, 643, 145–163.CrossRefGoogle Scholar
  116. 116.
    Jeandet, P., Vasserot, Y., Chastang, T., & Courot, E. (2013). Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. BioMed Research International ID 780145.Google Scholar
  117. 117.
    Malik, S., Hossein Mirjalili, M., Fett-Neto, A. G., Mazzafera, P., & Bonfill, M. (2013). Living between two worlds: Two-phase culture systems for producing plant secondary metabolites. Critical Reviews in Biotechnology, 33, 1–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Hélio Nitta Matsuura
    • 1
  • Sonia Malik
    • 2
  • Fernanda de Costa
    • 1
  • Morteza Yousefzadi
    • 3
  • Mohammad Hossein Mirjalili
    • 4
  • Randolph Arroo
    • 5
  • Avninder S. Bhambra
    • 5
  • Miroslav Strnad
    • 6
  • Mercedes Bonfill
    • 7
  • Arthur Germano Fett-Neto
    • 1
    Email author
  1. 1.Plant Physiology Laboratory, Center for Biotechnology and Department of BotanyUFRGSPorto AlegreBrazil
  2. 2.Health Sciences Graduate Program, Biological and Health Sciences CenterFederal University of MaranhãoSão LuísBrazil
  3. 3.Department of Marine Biology, Faculty of Marine Sciences and TechnologyHormozgan UniversityBandar AbbasIran
  4. 4.Department of Agriculture, Medicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
  5. 5.Faculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
  6. 6.Laboratory of Growth Regulators, Institute of Experimental Botany AS CRPalacký UniversityOlomoucCzech Republic
  7. 7.Plant Physiology Laboratory, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations