Advertisement

Molecular Biotechnology

, Volume 58, Issue 8–9, pp 528–539 | Cite as

The Modified Heparin-Binding l-Asparaginase of Wolinella succinogenes

  • E. P. Sannikova
  • N. V. Bulushova
  • S. E. Cheperegin
  • I. I. Gubaydullin
  • G. G. Chestukhina
  • V. V. Ryabichenko
  • I. A. Zalunin
  • E. K. Kotlova
  • G. E. Konstantinova
  • T. S. Kubasova
  • A. A. Shtil
  • V. S. Pokrovsky
  • S. V. Yarotsky
  • B. D. Efremov
  • D. G. KozlovEmail author
Original Paper

Abstract

The modified asparaginase Was79 was derived from the recombinant wild-type l-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125–8000 IU/kg). At Was79 single doses of 500–8000 IU/kg, the complete remission rate of 100 % was observed. The Was79 variant can be expressed intracellularly in E. coli as a less immunogenic formyl-methionine-free form at high per cell production levels.

Keywords

l-Asparaginase Wolinella succinogenes Reduced glutaminase activity Trypsinolysis resistance Anti-tumor activity Heparin-binding 

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of RF (State contract No. 14.N08.11.0014).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Durden, D. L., & Distasio, J. A. (1980). Comparison of the immunosuppressive effects of asparaginases from Escherichia coli and Vibrio succinogenes. Cancer Research, 40, 1125–1129.Google Scholar
  2. 2.
    Durden, D. L., & Distasio, J. A. (1981). Characterization of the effects of asparaginases from Escherichia coli and a glutaminase free asparaginase from Vibrio succinogenes on specific cell-mediated cytotoxicity. International Journal of Cancer, 27, 59–65.CrossRefGoogle Scholar
  3. 3.
    van den Berg, H. (2011). Asparaginase revisited. Leukemia and Lymphoma, 52, 168–178.CrossRefGoogle Scholar
  4. 4.
    Covini, D., Tardito, S., Bussolati, O., Laurent, R., Chiarelli, L. R., Pasquetto, M. V., et al. (2012). Expanding targets for a metabolic therapy of cancer: l-Asparaginase. Recent Patents on Anti-Cancer Drug Discovery, 7, 4–13.CrossRefGoogle Scholar
  5. 5.
    Shrivastava, A., Khan, A. A., Khurshid, M., Kalam, M. A., Jain, S. K., & Singhal, P. K. (2015). Recent developments in l-asparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology, 100, 1–10.CrossRefGoogle Scholar
  6. 6.
    Distasio, J. A., Niederman, R. A., Kafkewitz, D., & Goodman, D. (1976). Purification and characterization of l-asparaginase with anti-lymphoma activity from Vibrio succinogenes. Journal of Biological Chemistry, 251, 6929–6933.Google Scholar
  7. 7.
    Distasio, J. A., Salazar, A. M., Nadji, M., & Durden, D. L. (1982). Glutaminase-free asparaginase from Vibrio succinogenes: an antilymphoma enzyme lacking hepatotoxicity. International Journal of Cancer, 30, 343–347.CrossRefGoogle Scholar
  8. 8.
    Lubkowski, J., Palm, G. J., Gilliland, G. L., Derst, C., Röhm, K.-H., & Wlodawer, A. (1996). Crystal structure and amino acid sequence of Wolinella succinogenes l-asparaginase. European Journal of Biochemistry, 241, 201–207.CrossRefGoogle Scholar
  9. 9.
    Distasio, J. A., Niederman, R. A., & Kafkewitz, D. (1977). Antilymphoma activity of a glutaminase-free L-asparaginase of microbial origin. Proceedings of the Society for Experimental Biology and Medicine, 155, 528–531.CrossRefGoogle Scholar
  10. 10.
    Reinert, R. B., Oberle, L. M., Wek, S. A., Bunpo, P., Wang, X. P., Mileva, I., et al. (2006). Role of glutamine depletion in directing tissue-specific nutrient stress responses to l-asparaginase. Journal of Biological Chemistry, 281, 31222–31233.CrossRefGoogle Scholar
  11. 11.
    Derst, C., Henseling, J., & Röhm, K.-H. (2000). Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Science, 9, 2009–2017.CrossRefGoogle Scholar
  12. 12.
    Kotzia, G. A., Lappa, K., & Labrou, N. E. (2007). Tailoring structure-function properties of l-asparaginase: engineering resistance to trypsin cleavage. Biochemical Journal, 404, 337–343.CrossRefGoogle Scholar
  13. 13.
    Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate: Protein interactions. Annual Review of Biochemistry, 83, 129–157.CrossRefGoogle Scholar
  14. 14.
    Thompson, S. A., Higashiyama, S., Wood, K., Pollitt, N. S., Damm, D., McEnroe, G., et al. (1994). Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. Journal of Biological Chemistry, 269, 2541–2549.Google Scholar
  15. 15.
    Neubauer, P., Hofmann, K., Holst, O., Mattiasson, B., & Kruschke, P. (1992). Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Applied Microbiology and Biotechnology, 36, 739–744.CrossRefGoogle Scholar
  16. 16.
    Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41, 207–234.CrossRefGoogle Scholar
  17. 17.
    Wriston, J. C. (1970). Asparaginase. Methods in Enzymology, 17A, 732–742.CrossRefGoogle Scholar
  18. 18.
    Dawson, R. M. C., Elliott, D. C., Elliott, W. H., & Jones, K. M. (1986). Data for biochemical research (3rd ed.). Oxford: Clarendon Press.Google Scholar
  19. 19.
    The, T. H., & Feltkamp, T. E. W. (1970). Conjugation of fluorescein isothiocyanate to antibodies. I. Experiments on the conditions of conjugation. Immunology, 18, 865–873.Google Scholar
  20. 20.
    Chabner, B. A., & Longo, D. L. (Eds.). (2001). Cancer chemotherapy and biotherapy: Principles and practice (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  21. 21.
    Wade, H. E., Elsworth, R., Herbert, D., Keppie, J., & Sargeant, K. (1968). A new l-asparaginase with antitumor activity. Lancet, 2, 776–777.CrossRefGoogle Scholar
  22. 22.
    Rabiet, M. J., Huet, E., & Boulay, F. (2007). The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie, 89, 1089–1106.CrossRefGoogle Scholar
  23. 23.
    Elleuche, S., & Pöggeler, S. (2010). Inteins, valuable genetic elements in molecular biology and biotechnology. Applied Microbiology and Biotechnology, 87, 479–489.CrossRefGoogle Scholar
  24. 24.
    Burchenal, J. H., Benvenisti, D., & Dollinger, M. (1970). Experimental studies with l-asparaginase in mouse leukemias. In E. Grundmann & H. F. Oettgen (Eds.), Experimental and clinical effects of l -asparaginase (Vol. 33, pp. 102–113)., Recent results in cancer research Berlin: Springer.CrossRefGoogle Scholar
  25. 25.
    Connors, T. A., & Jones, M. (1970). The effect of asparaginase on some animal-tumors. In E. Grundmann & H. F. Oettgen (Eds.), Experimental and clinical effects of l -asparaginase (Vol. 33, pp. 181–187)., Recent results in cancer research Berlin: Springer.CrossRefGoogle Scholar
  26. 26.
    Offman, M. N., Krol, M., Patel, N., Krishnan, S., Liu, J.-Z., Saha, V., & Bates, P. A. (2011). Rational engineering of l-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, 117, 1614–1621.CrossRefGoogle Scholar
  27. 27.
    Chan, W. K., Lorenzi, P. L., Anishkin, A., Purwaha, P., Rogers, D. M., Sukharev, S., et al. (2014). The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood, 123, 3596–3606.CrossRefGoogle Scholar
  28. 28.
    Wriston, J. C, Jr, & Yellin, T. O. (1973). l-asparaginase: A review. Advances in Enzymology and Related Areas of Molecular Biology, 39, 185–248.Google Scholar
  29. 29.
    Schweizer, F. (2009). Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology, 625, 190–194.CrossRefGoogle Scholar
  30. 30.
    Kwon, Y. M., Chung, H. S., Moon, C., Yockman, J., Park, Y. J., Gitlin, S. D., et al. (2009). l-Asparaginase-encasulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). Journal of Controlled Release, 139, 182–189.CrossRefGoogle Scholar
  31. 31.
    Domenech, C., Thomas, X., Chabaud, S., Baruchel, A., Gueyffier, F., Mazingue, F., et al. (2011). l-Asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005-01 randomized trial. British Journal of Haematology, 153, 58–65.CrossRefGoogle Scholar
  32. 32.
    Agrawal, V., Woo, J. H., Borthakur, G., Kantarjian, H., & Frankel, A. E. (2013). Red blood cell-encapsulated l-asparaginase: potential therapy of patients with asparagine synthetase deficient acute myeloid leukemia. Protein and Peptide Letters, 20, 392–402.Google Scholar
  33. 33.
    Lorentz, C. M., Kontos, S., Diaceri, G., Henry, H., & Hubbell, J. A. (2015). Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Science Advances, 1, e1500112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. P. Sannikova
    • 1
  • N. V. Bulushova
    • 1
  • S. E. Cheperegin
    • 1
  • I. I. Gubaydullin
    • 1
  • G. G. Chestukhina
    • 1
  • V. V. Ryabichenko
    • 1
  • I. A. Zalunin
    • 1
  • E. K. Kotlova
    • 1
  • G. E. Konstantinova
    • 1
  • T. S. Kubasova
    • 1
  • A. A. Shtil
    • 2
  • V. S. Pokrovsky
    • 2
  • S. V. Yarotsky
    • 1
  • B. D. Efremov
    • 1
  • D. G. Kozlov
    • 1
    Email author
  1. 1.State Research Institute for Genetics and Selection of Industrial MicroorganismsMoscowRussia
  2. 2.N. N. Blokhin Russian Cancer Research CenterMoscowRussia

Personalised recommendations