Molecular Biotechnology

, Volume 58, Issue 4, pp 256–267 | Cite as

Biochemical and in silico Characterization of Recombinant L-Lactate Dehydrogenase of Theileria annulata

  • Belma Nural
  • Aysegul Erdemir
  • Ozal Mutlu
  • Sinem Yakarsonmez
  • Ozkan Danis
  • Murat Topuzogullari
  • Dilek Turgut-Balik
Original Paper


Theileria annulata is a parasite that causes theileriosis in cattle. Reports about drug resistance made essential to develop new drug. LDH of Theileria schizonts is the vital enzyme for its anaerobic metabolism. TaLDH gene was first cloned into pGEM-T cloning vector with two introns in our previous study. Here we report cloning of TaLDH without introns into pLATE 31 vector in E. coli BL21(DE3). Protein was in an inactive form. Two mutations were fixed to express the active protein. Protein was purified by affinity chromatography and evaluated by SDS-PAGE and size exclusion chromatography. Optimum pH of enzyme was performed in pH 7.5, and enzyme was stabilized at 20–40 °C. Enzyme kinetics of recombinant TaLDH were found to be in the direction of pyruvate to lactate K m 0.1324 and K i 4.295 mM, k cat , 44.55/s and k cat /K m , 3.3693 × 105/M/s. 3D structure of TaLDH was predicted, and possible drug binding sites were determined by homology modelling.


LDH Theileria annulata Thermostability Substrate inhibition Homology modelling 


  1. 1.
    Sharifiyazdi, H., Namazi, F., Oryan, A., Shahriari, R., & Razavi, M. (2012). Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Veterinary Parasitology, 187, 431–435.CrossRefGoogle Scholar
  2. 2.
    Bishop, R., Musoke, A., Morzaria, S., Gardner, M., & Nene, V. (2004). Theileria: intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology, 129, S271–S283.CrossRefGoogle Scholar
  3. 3.
    Witschi, M., Xia, D., Sanderson, S., Baumgartner, M., Wastling, J., & Dobbelaere, D. (2013). Proteomic analysis of the Theileria annulata schizont. International Journal for Parasitology, 43, 173–180.CrossRefGoogle Scholar
  4. 4.
    Alsaad, K. M., Suleiman, E. G., & Al-Obaidi, Q. T. (2013). Theileriosis in newborn calves In Mosul, Iraq. Basrah Journal Veterinary Research, 12, 265–274.Google Scholar
  5. 5.
    McHardy, N., & Morgan, D. (1985). Treatment of Theileria annulata infection in calves with parvaquone. Research in Veterinary Science, 39, 1–4.Google Scholar
  6. 6.
    McHardy, N., Wekesa, L., Hudson, A., & Randall, A. (1985). Antitheilerial activity of BW720C (buparvaquone): a comparison with parvaquone. Research in Veterinary Science, 39, 29–33.Google Scholar
  7. 7.
    Mhadhbi, M., Naouach, A., Boumiza, A., Chaabani, M. F., BenAbderazzak, S., & Darghouth, M. A. (2010). In vivo evidence for the resistance of Theileria annulata to buparvaquone. Veterinary Parasitology, 169, 241–247.CrossRefGoogle Scholar
  8. 8.
    Marsolier, J., Perichon, M., DeBarry, J., Villoutreix, B., Chluba, J., Lopez, T., et al. (2015). Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature, 520, 378–382.CrossRefGoogle Scholar
  9. 9.
    Kiama, T., Kiaira, J., Konji, V., & Musoke, A. (1999). Enzymes of glucose and glycerol catabolism in in vitro-propagated Theileria parva schizonts. The Veterinary Journal, 158, 221–227.CrossRefGoogle Scholar
  10. 10.
    Holbrook, J., Liljas, A., Steindel, S. J., & Rossmann, M. (1975). Lactate dehydrogenase. The Enzymes, 11, 191–192.CrossRefGoogle Scholar
  11. 11.
    Royer, R. E., Deck, L. M., Campos, N. M., Hunsaker, L. A., & Vander Jagt, D. L. (1986). Biologically active derivatives of gossypol: Synthesis and antimalarial activities of peri-acylated gossylic nitriles. Journal of Medicinal Chemistry, 29, 1799–1801.CrossRefGoogle Scholar
  12. 12.
    Erdemir, A., Aktas, M., Dumanli, N., & Turgut-Balik, D. (2012). Isolation, cloning and sequence analysis of the lactate dehydrogenase gene from Theileria annulata may lead to design of new antitheilerial drugs. Veterinarni Medicina, 57, 559–567.Google Scholar
  13. 13.
    Sambrook, J., & Russell David, W. (1989). Molecular cloning: a laboratory manual I–II–III (3rd ed.). New York: CSHL Press.Google Scholar
  14. 14.
    Turgut-Balik, D., Shoemark, D. K., Moreton, K. M., Sessions, R. B., & Holbrook, J. J. (2001). Over-production of lactate dehydrogenase from Plasmodium falciparum opens a route to new antimalarials. Biotechnology Letters, 23, 917–921.CrossRefGoogle Scholar
  15. 15.
    Yakarsonmez, S., Mutlu, C. E. O., Nural, B., Sarıyer, E., Topuzogullari, M., Milward, M. R., et al. (2016). Cloning, expression and characterization of the gene encoding the enolase from Fusobacterium nucleatum. Applied Biochemistry and Microbiology, 52, 1–9.CrossRefGoogle Scholar
  16. 16.
    Cameron, A., Read, J., Tranter, R., Winter, V. J., Sessions, R. B., Brady, R. L., et al. (2004). Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. Journal of Biological Chemistry, 279, 31429–31439.CrossRefGoogle Scholar
  17. 17.
    Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202.CrossRefGoogle Scholar
  18. 18.
    Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. Y., Pieper, U. and Sali, A. (2006) Comparative protein structure modeling using modeller current protocol bioinformatics, Wiley, Inc., New YorkGoogle Scholar
  19. 19.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.CrossRefGoogle Scholar
  20. 20.
    Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2, 1511.CrossRefGoogle Scholar
  21. 21.
    Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.CrossRefGoogle Scholar
  22. 22.
    Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Structure Function and Bioinformatics, 50, 437–450.CrossRefGoogle Scholar
  23. 23.
    Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52, 360–372.CrossRefGoogle Scholar
  24. 24.
    Kawabata, T. (2010). Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins Structure Function and Bioinformatics, 78, 1195–1211.CrossRefGoogle Scholar
  25. 25.
    Anderson, A. C. (2003). The process of structure-based drug design. Chemistry and Biology, 10, 787–797.CrossRefGoogle Scholar
  26. 26.
    Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498–511.CrossRefGoogle Scholar
  27. 27.
    Al-Anouti, F., Tomavo, S., Parmley, S., & Ananvoranich, S. (2004). The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. Journal of Biological Chemistry, 279, 52300–52311.CrossRefGoogle Scholar
  28. 28.
    Chaikuad, A., Fairweather, V., Conners, R., Joseph-Horne, T., Turgut-Balik, D., & Brady, R. L. (2005). Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. Biochemistry, 44, 16221–16228.CrossRefGoogle Scholar
  29. 29.
    Dunn, C. R., Banfield, M. J., Barker, J. J., Higham, C. W., Moreton, K. M., Turgut-Balik, D., et al. (1996). The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nature Structural and Molecular Biology, 3, 912–915.CrossRefGoogle Scholar
  30. 30.
    Turgut-Balik, D., Sadak, D., & Celik, V. (2006). Analysis of active site loop amino acids of lactate dehydrogenase from Plasmodium vivax by site-directed mutagenesis studies. Drug Development Research, 67, 175–180.CrossRefGoogle Scholar
  31. 31.
    Kavanagh, K. L., Elling, R. A., & Wilson, D. K. (2004). Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD + use. Biochemistry, 43, 879–889.CrossRefGoogle Scholar
  32. 32.
    Ohlsson, I., Nordström, B., & Brändén, C.-I. (1974). Structural and functional similarities within the coenzyme binding domains of dehydrogenases. Journal of Molecular Biology, 89, 339–354.CrossRefGoogle Scholar
  33. 33.
    Bellamacina, C. (1996). The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. The FASEB Journal, 10, 1257–1269.Google Scholar
  34. 34.
    Lesk, A. M. (1995). NAD-binding domains of dehydrogenases. Current Opinion in Structural Biology, 5, 775–783.CrossRefGoogle Scholar
  35. 35.
    Lee, B. I., Chang, C., Cho, S.-J., Eom, S. H., Kim, K. K., Yu, Y. G., & Suh, S. W. (2001). Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Journal of Molecular Biology, 307, 1351–1362.CrossRefGoogle Scholar
  36. 36.
    Brown, W. M., Yowell, C. A., Hoard, A., Vander Jagt, T. A., Hunsaker, L. A., Deck, L. M., et al. (2004). Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry, 43, 6219–6229.CrossRefGoogle Scholar
  37. 37.
    Todorova, T., Pesheva, M., Stamenova, R., Dimitrov, M., & Venkov, P. (2012). Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae. Yeast, 29, 191–199.CrossRefGoogle Scholar
  38. 38.
    Hewitt, C., Eszes, C., Sessions, R., Moreton, K., Dafforn, T., Takei, J., et al. (1999). A general method for relieving substrate inhibition in lactate dehydrogenases. Protein Engineering, 12, 491–496.CrossRefGoogle Scholar
  39. 39.
    Eszes, C. M., Sessions, R. B., Clarke, A. R., Moreton, K. M., & Holbrook, J. J. (1996). Removal of substrate inhibition in a lactate dehydrogenase from human muscle by a single residue change. FEBS Letters, 399, 193–197.CrossRefGoogle Scholar
  40. 40.
    Hewitt, C. O., Sessions, R. B., Dafforn, T. R., & Holbrook, J. J. (1997). Protein engineering tests of a homology model of Plasmodium falciparum lactate dehydrogenase. Protein Engineering, 10, 39–44.CrossRefGoogle Scholar
  41. 41.
    Dando, C., Schroeder, E. R., Hunsaker, L. A., Deck, L. M., Royer, R. E., Zhou, X., et al. (2001). The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: comparisons with pLDH from Plasmodium falciparum. Molecular and Biochemical Parasitology, 118, 23–32.CrossRefGoogle Scholar
  42. 42.
    Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of homology models in the drug discovery process. Drug Discovery Today, 9, 659–669.CrossRefGoogle Scholar
  43. 43.
    Cavasotto, C. N., & Phatak, S. S. (2009). Homology modeling in drug discovery: Current trends and applications. Drug Discovery Today, 14, 676–683.CrossRefGoogle Scholar
  44. 44.
    Boucher, J. I., Jacobowitz, J. R., Beckett, B. C., Classen, S., & Theobald, D. L. (2014). An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. Elife, 3, e02304.CrossRefGoogle Scholar
  45. 45.
    Sessions, R. B., Dewar, V., Clarke, A. R., & Holbrook, J. J. (1997). A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia. Protein Engineering, 10, 301–306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Belma Nural
    • 1
  • Aysegul Erdemir
    • 2
  • Ozal Mutlu
    • 3
  • Sinem Yakarsonmez
    • 2
  • Ozkan Danis
    • 4
  • Murat Topuzogullari
    • 2
  • Dilek Turgut-Balik
    • 2
  1. 1.Department of Biotechnology and Biosafety, Institute of ScienceEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.Department of Bioengineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
  3. 3.Department of Biology, Faculty of Arts and SciencesMarmara UniversityIstanbulTurkey
  4. 4.Department of Chemistry, Faculty of Arts and SciencesMarmara UniversityIstanbulTurkey

Personalised recommendations