Molecular Biotechnology

, Volume 58, Issue 1, pp 56–64 | Cite as

Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography

  • Manu O. Platt
  • Denise Evans
  • Philip M. Keegan
  • Lynne McNamara
  • Ivana K. Parker
  • LaDeidra M. Roberts
  • Alexander W. Caulk
  • Rudolph L. GleasonJr.
  • Daniel Seifu
  • Wondwossen Amogne
  • Clement Penny
Original Paper

Abstract

Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error prone, justifying a need for objective, biological measures affordable in low-resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART-naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire, 4–6 months after ART initiation. 86 % of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin-positive patients were twice as likely to have detectable viral loads (RR 2.32 95 % CI 1.26–4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis-based assay makes it a prime candidate for implementation in resource-limited settings.

Keywords

Monitoring Zymography Cysteine protease Infectious disease AIDS Sub-Saharan Africa 

Abbreviations

3TC

Lamivudine

ART

Antiretroviral therapy

ARV

Antiretrovirals

CI

Confidence interval

EFV

Efavirenz

HIV

Human Immunodeficiency Virus

cART

Combination active antiretroviral therapy

LC/MS

Liquid chromatography–tandem mass spectroscopy

LPV/r

Lopinavir boosted with ritonavir

NNRTI

Non-nucleoside reverse transcriptase inhibitors

NRTI

Nucleoside reverse transcriptase inhibitors

NVP

Nevirapine

PBMC

Peripheral blood mononuclear cells

PI

Protease inhibitors

PrEP

Pre-exposure prophylaxis

RR

Risk ratio

SMAQ

Simplified medication adherence questionnaire

TDF

Tenofovir disoproxil fumarate

WHO

World Health Organization

References

  1. 1.
    World Health Organization. (2015). Global health observatory (GHO) data. http://www.who.int/gho/hiv/en/.
  2. 2.
    Bendavid, E., Holmes, C. B., Bhattacharya, J., & Miller, G. (2012). HIV development assistance and adult mortality in Africa. JAMA, 307, 2060–2067.CrossRefGoogle Scholar
  3. 3.
    Lima, V. D., Harrigan, R., Murray, M., Moore, D. M., Wood, E., Hogg, R. S., & Montaner, J. S. (2008). Differential impact of adherence on long-term treatment response among naive HIV-infected individuals. Aids, 22, 2371–2380.CrossRefGoogle Scholar
  4. 4.
    Goldman, J. D., Cantrell, R. A., Mulenga, L. B., Tambatamba, B. C., Reid, S. E., Levy, J. W., et al. (2008). Simple adherence assessments to predict virologic failure among HIV-infected adults with discordant immunologic and clinical responses to antiretroviral therapy. AIDS Research and Human Retroviruses, 24, 1031–1035.CrossRefGoogle Scholar
  5. 5.
    Chesney, M. A. (2006). The elusive gold standard. Future perspectives for HIV adherence assessment and intervention. Journal of acquired immune deficiency syndromes, 43(Suppl 1), S149–155.CrossRefGoogle Scholar
  6. 6.
    Ajose, O., Mookerjee, S., Mills, E. J., Boulle, A., & Ford, N. (2012). Treatment outcomes of patients on second-line antiretroviral therapy in resource-limited settings: A systematic review and meta-analysis. Aids, 26, 929–938.CrossRefGoogle Scholar
  7. 7.
    Liu, H., Miller, L. G., Hays, R. D., Wagner, G., Golin, C. E., Hu, W., et al. (2006). A practical method to calibrate self-reported adherence to antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes, 43(Suppl 1), S104–112.CrossRefGoogle Scholar
  8. 8.
    Grant, R. M., Lama, J. R., Anderson, P. L., McMahan, V., Liu, A. Y., Vargas, L., Goicochea, P., Casapia, M., Guanira-Carranza, J. V., Ramirez-Cardich, M. E., Montoya-Herrera, O., Fernandez, T., Veloso, V. G., Buchbinder, S. P., Chariyalertsak, S., Schechter, M., Bekker, L. G., Mayer, K. H., Kallas, E. G., Amico, K. R., Mulligan, K., Bushman, L. R., Hance, R. J., Ganoza, C., Defechereux, P., Postle, B., Wang, F., McConnell, J. J., Zheng, J. H., Lee, J., Rooney, J. F., Jaffe, H. S., Martinez, A. I., Burns, D. N., Glidden, D. V., & T. iPrEx Study. (2010). Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. The New England Journal of Medicine, 363, 2587–2599.Google Scholar
  9. 9.
    Karim, Q. A., Karim, S. S. A., Frohlich, J. A., Grobler, A. C., Baxter, C., Mansoor, L. E., et al. (2010). Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV Infection in Women. Science, 329, 1168–1174.CrossRefGoogle Scholar
  10. 10.
    Evans, D., & Fox, M. P. (2013). When and how should we be measuring adherence to antiretroviral therapy in resource-limited settings? Journal of Clinical Research in HIV AIDS and Prevention. doi:10.14302/issn.2324-7339.jcrhap-13-edt.1.2.Google Scholar
  11. 11.
    Brix, K., Dunkhorst, A., Mayer, K., & Jordans, S. (2008). Cysteine cathepsins: Cellular roadmap to different functions. Biochimie, 90, 194–207.CrossRefGoogle Scholar
  12. 12.
    Chapman, H. A., Riese, R. J., & Shi, G. P. (1997). Emerging roles for cysteine proteases in human biology. Annual Review of Physiology, 59, 63–88.CrossRefGoogle Scholar
  13. 13.
    Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., & Allis, C. D. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell, 135, 284–294.CrossRefGoogle Scholar
  14. 14.
    de Nooijer, R., Bot, I., von der Thusen, J. H., Leeuwenburgh, M. A., Overkleeft, H. S., Kraaijeveld, A. O., et al. (2009). Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 188–194.CrossRefGoogle Scholar
  15. 15.
    Kitamoto, S., Sukhova, G. K., Sun, J., Yang, M., Libby, P., Love, V., et al. (2007). Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation, 115, 2065–2075.CrossRefGoogle Scholar
  16. 16.
    Liu, J., Ma, L., Yang, J., Ren, A., Sun, Z., Yan, G., et al. (2006). Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis, 186, 411–419.CrossRefGoogle Scholar
  17. 17.
    Liu, J., Sukhova, G. K., Sun, J.-S., Xu, W.-H., Libby, P., & Shi, G.-P. (2004). Lysosomal cysteine proteases in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1359–1366.CrossRefGoogle Scholar
  18. 18.
    Lutgens, E., Lutgens, S. P., Faber, B. C., Heeneman, S., Gijbels, M. M., de Winther, M. P., et al. (2006). Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation, 113, 98–107.CrossRefGoogle Scholar
  19. 19.
    Sukhova, G. K., Zhang, Y., Pan, J. H., Wada, Y., Yamamoto, T., Naito, M., et al. (2003). Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest, 111, 897–906.CrossRefGoogle Scholar
  20. 20.
    Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A., & Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. The Journal of Clinical Investigation, 102, 576–583.CrossRefGoogle Scholar
  21. 21.
    Hansen, L., Parker, I., Sutliff, R. L., Platt, M. O., & Gleason, R. L., Jr. (2012). Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Annals of Biomedical Engineering, 41, 682–693.CrossRefGoogle Scholar
  22. 22.
    Hansen, L., Parker, I., Roberts, L. M., Sutliff, R. L., Platt, M. O., & Gleason, R. L, Jr. (2013). Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. Journal of Biomechanics, 46, 1540–1547.CrossRefGoogle Scholar
  23. 23.
    Parker, I. K., Roberts, L. M., Hansen, L., Gleason, R. L, Jr, Sutliff, R. L., & Platt, M. O. (2014). Pro-atherogenic shear stress and HIV proteins synergistically upregulate cathepsin K in endothelial cells. Annals of Biomedical Engineering, 42, 1185–1194.CrossRefGoogle Scholar
  24. 24.
    Keegan, P. M., Wilder, C. L., & Platt, M. O. (2012). Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Molecular and Cellular Biochemistry, 367, 65–72.CrossRefGoogle Scholar
  25. 25.
    Bromme, D., Li, Z., Barnes, M., & Mehler, E. (1999). Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry, 38, 2377–2385.CrossRefGoogle Scholar
  26. 26.
    Yasuda, Y., Li, Z., Greenbaum, D., Bogyo, M., Weber, E., & Bromme, D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. Journal of Biological Chemistry, 279, 36761–36770.CrossRefGoogle Scholar
  27. 27.
    Punturieri, A., Filippov, S., Allen, E., Caras, I., Murray, R., Reddy, V., & Weiss, S. J. (2000). Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. Journal of Experimental Medicine, 192, 789–799.CrossRefGoogle Scholar
  28. 28.
    Wilson, S., Hashamiyan, S., Clarke, L., Saftig, P., Mort, J., Dejica, V. M., & Bromme, D. (2009). Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities. American Journal of Pathology, 175, 2053–2062.CrossRefGoogle Scholar
  29. 29.
    Li, W. A., Barry, Z. T., Cohen, J. D., Wilder, C. L., Deeds, R. J., Keegan, P. M., & Platt, M. O. (2010). Detection of femtomole quantities of mature cathepsin K with zymography. Analytical Biochemistry, 401, 91–98.CrossRefGoogle Scholar
  30. 30.
    Dumas, J. E., & Platt, M. O. (2013). Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: Compromise among limits of detection, reduced time, and resources. Molecular Biotechnology, 54, 1038–1047.CrossRefGoogle Scholar
  31. 31.
    Fox, M. P., Maskew, M., MacPhail, A. P., Long, L., Brennan, A. T., Westreich, D., et al. (2013). Cohort profile: The Themba Lethu Clinical Cohort, Johannesburg, South Africa. International Journal of Epidemiology, 42, 430–439.CrossRefGoogle Scholar
  32. 32.
    R. O. S. A. Department of Health (2010). The South African Antiretroviral treatment guidelines 2010, http://www.uj.ac.za/EN/CorporateServices/ioha/Documentation/Documents/ART%20Guideline.pdf.
  33. 33.
    Nieuwkerk, P. T., & Oort, F. J. (2005). Self-reported adherence to antiretroviral therapy for HIV-1 infection and virologic treatment response: A meta-analysis. Journal of Acquired Immune Deficiency Syndromes, 38, 445–448.CrossRefGoogle Scholar
  34. 34.
    Truax, R. E., Powell, M. D., Dietrich, M. A., French, D. D., Ellis, J. A., & Newman, M. J. (1993). Cryopreservation of bovine buffy coat leukocytes for use in immunologic studies. American Journal of Veterinary Research, 54, 862–866.Google Scholar
  35. 35.
    Wilder, C. L., Park, K. Y., Keegan, P. M., & Platt, M. O. (2011). Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Archives of Biochemistry and Biophysics, 516, 52–57.CrossRefGoogle Scholar
  36. 36.
    South African National Department of Health. (2010). South African National Department of Health Antiretroviral Therapy Guidelines 2010. www.sahivsoc.org/upload/documents/Summary_The_South_African_Antiretroviral_Treatment_2010.pdf.
  37. 37.
    Cohen, M. S., & Baden, L. R. (2012). Preexposure prophylaxis for HIV–where do we go from here? New England Journal of Medicine, 367, 459–461.CrossRefGoogle Scholar
  38. 38.
    Hamers, R. L., Sigaloff, K. C., Wensing, A. M., Wallis, C. L., Kityo, C., Siwale, M. et al. (2012). Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: Implications for second-line ART strategies. Clinical Infectious Diseases, 54, 1660–1669.CrossRefGoogle Scholar
  39. 39.
    Wallis, C. L., Papathanasopolous, M. A., Fox, M., Conradie, F., Ive, P., Orrell, C., et al. (2012). Low rates of nucleoside reverse transcriptase inhibitor (NRTI) resistance detected in a well monitored cohort in South Africa accessing antiretroviral therapy. Antiviral Therapy, 17, 313.CrossRefGoogle Scholar
  40. 40.
    Rigsby, M. O., Rosen, M. I., Beauvais, J. E., Cramer, J. A., Rainey, P. M., O’Malley, S. S., et al. (2000). Cue-dose Training with Monetary Reinforcement: Pilot Study of an Antiretroviral Adherence Intervention. Journal of General Internal Medicine, 15, 841–847.CrossRefGoogle Scholar
  41. 41.
    Orrell, C., Harling, G., Lawn, S. D., Kaplan, R., McNally, M., Bekker, L. G., & Wood, R. (2007). Conservation of first-line antiretroviral treatment regimen where therapeutic options are limited. Antivir Ther, 12, 83–88.Google Scholar
  42. 42.
    Hoffmann, C. J., Charalambous, S., Sim, J., Ledwaba, J., Schwikkard, G., Chaisson, R. E., et al. (2009). Viremia, resuppression, and time to resistance in human immunodeficiency virus (HIV) subtype C during first-line antiretroviral therapy in South Africa. Clinical Infectious Diseases, 49, 1928–1935.CrossRefGoogle Scholar
  43. 43.
    Baeten, J. M., Donnell, D., Ndase, P., Mugo, N. R., Campbell, J. D., Wangisi, J., et al. (2012). Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. New England Journal of Medicine, 367, 399–410.CrossRefGoogle Scholar
  44. 44.
    Van Damme, L., Corneli, A., Ahmed, K., Agot, K., Lombaard, J., Kapiga, S., Malahleha, M., Owino, F., Manongi, R., Onyango, J., Temu, L., Monedi, M. C., Mak’Oketch, P., Makanda, M., Reblin, I., Makatu, S. E., Saylor, L., Kiernan, H., Kirkendale, S., Wong, C., Grant, R., Kashuba, A., Nanda, K., Mandala, J., Fransen, K., Deese, J., Crucitti, T., Mastro, T. D., Taylor, D., & F. E.-P. S. Group. (2012). Preexposure prophylaxis for HIV infection among African women. The New England Journal of Medicine, 367, 411–422.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Manu O. Platt
    • 1
    • 2
  • Denise Evans
    • 3
  • Philip M. Keegan
    • 1
    • 2
  • Lynne McNamara
    • 4
  • Ivana K. Parker
    • 2
    • 5
  • LaDeidra M. Roberts
    • 1
    • 2
  • Alexander W. Caulk
    • 2
    • 5
  • Rudolph L. GleasonJr.
    • 1
    • 2
    • 5
  • Daniel Seifu
    • 6
  • Wondwossen Amogne
    • 7
  • Clement Penny
    • 8
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.The Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical MedicineUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical MedicineUniversity of the WitwatersrandJohannesburgSouth Africa
  5. 5.The George W. Woodruff School of Mechanical EngineeringAtlantaUSA
  6. 6.Department of BiochemistryAddis Ababa UniversityAddis AbabaEthiopia
  7. 7.Department of Internal MedicineAddis Ababa UniversityAddis AbabaEthiopia
  8. 8.Oncology Division, Department of Internal MedicineUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations